High Temperature Oxidation Behavior of Nd-doped $UO_2$

네오듐 고용 이산화우라늄의 고온 산화거동

  • Published : 2013.06.10

Abstract

The phase change of $(U_{1-x}Nd_x)_3O_8$ powder produced by oxidation of Nd-doped $UO_2$ pellet at $500^{\circ}C$ was investigated by high temperature oxidation heat treatment at $900{\sim}1500^{\circ}C$ under an air atmosphere. The XRD analysis results showed that the formation of $(U_{1-y}Nd_y)O_{2+z}$ phase and $U_3O_8$ phase from metastable $(U,Nd)_3O_8$ phase initiated at a temperature of $1000^{\circ}C$. The relative integrated intensity of $(U_{1-y}Nd_y)O_{2+z}$ phase to $U_3O_8$ phase increased with increasing of the oxidation temperature from 1100 to $1500^{\circ}C$. And also, it was found from the SEM observation that the particle size of $(U_{1-y}Nd_y)O_{2+z}$ phase increased with increasing of the oxidation temperature. However, electrone probe X-ray microanalyzer (EPMA) analysis results showed that Nd contents in $(U_{1-y}Nd_y)O_{2+z}$ phase decreased with increasing of the oxidation temperature. This behavior on the ground of XRD, SEM, and EPMA analysis data could be interpreted in terms of the transportation of U ions from $U_3O_8$ phase into $(U_{1-y}Nd_y)O_{2+z}$ phase through the interface of two phases during high temperature oxidation.

Keywords

thermal oxidation;phase separation;neutron absorber;neodymium;uranium oxides

References

  1. H. Assmann and J. P. Robin, Guidebook on Quality Control of Mixed Oxides and Gadolinium Bearing Fuels for Light Water Reactors, IAEA (Ed.), IAEA-TECDOC-584, 51 (1983).
  2. R. J. McEachern and P. Taylor, J. Nucl. Mater., 254, 87 (1998). https://doi.org/10.1016/S0022-3115(97)00343-7
  3. D. Labroche, O. Dugne, and C. Chatillon, J. Nucl. Mater., 312, 21 (2003). https://doi.org/10.1016/S0022-3115(02)01322-3
  4. D. Labroche, O. Dugne, and C. Chatillon, J. Nucl. Mater., 312, 50 (2003). https://doi.org/10.1016/S0022-3115(02)01323-5
  5. P. Taylor and R. J. McEachern, WO 96/36971 (1996).
  6. J. H. Yang, K. W. Kang, K. S. Kim, K. W. Song, and J. H. Kim, J. Korean Nucl. Soc., 33, 307 (2001).
  7. C. Keller, H. Engerer, L. Leitner, and U. Sriyotha, J. Inorg. Nucl. Chem., 31, 965 (1969). https://doi.org/10.1016/0022-1902(69)80144-2
  8. C. Keller and A. Boroujerdi, J. Inorg. Nucl. Chem., 34, 1187 (1972). https://doi.org/10.1016/0022-1902(72)80318-X
  9. U. Berndt, R. Tanamas, and C. Keller, J. Solid State Chem., 17, 113 (1976). https://doi.org/10.1016/0022-4596(76)90209-7
  10. I. B. De Alleluia, M. Hoshi, W. G. Jocher, and C. Keller, J. Inorg. Nucl. Chem., 43, 1831 (1981). https://doi.org/10.1016/0022-1902(81)80392-2
  11. R. J. Ackermann and A. T. Chang, J. Chem. Thermodyn., 5, 873 (1973). https://doi.org/10.1016/S0021-9614(73)80050-3
  12. E. D. Lynch, J. H. Handwerk, and C. L. Hoenig, J. Amer. Ceram. Soc., 43, 520 (1960). https://doi.org/10.1111/j.1151-2916.1960.tb13607.x
  13. A. M. Anthony, R. Kiyoura, and T. Sata, J. Nucl. Mater., 10, 8 (1963). https://doi.org/10.1016/0022-3115(63)90112-0