Organo-Compatible Gate Dielectrics for High-performance Organic Field-effect Transistors

고성능 유기 전계효과 트랜지스터를 위한 유기친화 게이트 절연층

  • Lee, Minjung (Department of Advanced Fiber Engineering, Inha University) ;
  • Lee, Seulyi (Department of Advanced Fiber Engineering, Inha University) ;
  • Yoo, Jaeseok (Department of Advanced Fiber Engineering, Inha University) ;
  • Jang, Mi (Department of Advanced Fiber Engineering, Inha University) ;
  • Yang, Hoichang (Department of Advanced Fiber Engineering, Inha University)
  • 이민정 (인하대학교 섬유신소재공학과) ;
  • 이슬이 (인하대학교 섬유신소재공학과) ;
  • 유재석 (인하대학교 섬유신소재공학과) ;
  • 장미 (인하대학교 섬유신소재공학과) ;
  • 양회창 (인하대학교 섬유신소재공학과)
  • Published : 2013.06.10

Abstract

Organic semiconductor-based soft electronics has potential advantages for next-generation electronics and displays, which request mobile convenience, flexibility, light-weight, large area, etc. Organic field-effect transistors (OFET) are core elements for soft electronic applications, such as e-paper, e-book, smart card, RFID tag, photovoltaics, portable computer, sensor, memory, etc. An optimal multi-layered structure of organic semiconductor, insulator, and electrodes is required to achieve high-performance OFET. Since most organic semiconductors are self-assembled structures with weak van der Waals forces during film formation, their crystalline structures and orientation are significantly affected by environmental conditions, specifically, substrate properties of surface energy and roughness, changing the corresponding OFET. Organo-compatible insulators and surface treatments can induce the crystal structure and orientation of solution- or vacuum-processable organic semiconductors preferential to the charge-carrier transport in OFET.

Keywords

gate dielectric;soft electronics;organic semiconductor;organic field-effect transistor

References

  1. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science, 290, 2123 (2000). https://doi.org/10.1126/science.290.5499.2123
  2. S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Mater., 3, 317 (2004). https://doi.org/10.1038/nmat1105
  3. Y.-l. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, J. Am. Chem. Soc., 124, 7654 (2002). https://doi.org/10.1021/ja026355v
  4. Q. J. Cai, M. B. Chan-Park, Q. Zhou, Z. S. Lu, C. M. Li, and B. S. Ong, Org. Electron., 9, 936 (2008). https://doi.org/10.1016/j.orgel.2008.06.014
  5. D. J. Gundlach, L. Zhou, J. A. Nichols, T. N. Jackson, P. V. Necliudov, and M. S. Shur, J. Appl. Phys., 100, 024509 (2006). https://doi.org/10.1063/1.2215132
  6. H. Yang, C. Yang, S. H. Kim, M. Jang, and C. E. Park, ACS Appl. Mater. Interf., 2, 391 (2010). https://doi.org/10.1021/am900652h
  7. S. Kola, J. Sinha, and H. E. Katz, J. Polym. Sci., Part B: Polym. Phys., 50, 1090 (2012). https://doi.org/10.1002/polb.23054
  8. J. Veres, S. Ogier, and G. Lloyd, Chem. Mater., 16, 4543 (2004). https://doi.org/10.1021/cm049598q
  9. A. Ulman, Chem. Rev., 96, 1533 (1996). https://doi.org/10.1021/cr9502357
  10. D. H. Kim, H. S. Lee, H. Yang, L. Yang, and K. Cho, Adv. Funct. Mater., 18, 1363 (2008). https://doi.org/10.1002/adfm.200701019
  11. S. Y. Yang, K. Shin, S. H. Kim, H. Jeon, J. H. Kang, H. Yang, and C. E. Park, J. Phys. Chem., B, 110, 20302 (2006). https://doi.org/10.1021/jp0646527
  12. H. Yang, S. H. Kim, L. Yang, S. Y. Yang, and C. E. Park, Adv. Mater., 19, 2868 (2007). https://doi.org/10.1002/adma.200700560
  13. S. H. Kim, K. Hong, M. Jang, J. Jang, J. E. Anthony, H. Yang, and C. E. Park, Adv. Mater., 22, 4809 (2010). https://doi.org/10.1002/adma.201000904
  14. S. C. B. Mannsfeld, B. C.-K. Tee, R. M. Stoltenberg, C. V. H.-H. Chen, S. Barman, B. V. O. Muir, A. N. Sokolov, C. Reese, and Z. Bao, Nat. Mater., 9, 859 (2010). https://doi.org/10.1038/nmat2834
  15. Y. Guo, G. Yu, and Y. Liu, Adv. Mater., 22, 4427 (2010). https://doi.org/10.1002/adma.201000740
  16. G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Tony, and Z. Bao, Nature, 480, 504 (2011). https://doi.org/10.1038/nature10683
  17. S. H. Kim, M. Jang, H. Yang, and C. E. Park, J. Mater. Chem., 20, 5612 (2010). https://doi.org/10.1039/b921371f
  18. D. J. Gundlach, J. E. Royer, S. K. Park, S. Subramanian, O. D. Jurchescu, B. H. Hamadani, A. J. Moad, R. J. Kline, L. C. Teague, O. Kirillov, C. A. Richter, J. G. Kushmerick, L. J. Richter, S. R. Parkin, T. N. Jackson, and J. E. Anthony, Nat. Mater., 7, 216 (2008). https://doi.org/10.1038/nmat2122
  19. C. Kanimozhi, N. Yaacobi-Gross, K. W. Chou, A. Amassian, T. D. Anthopoulos, and S. Patil, J. Am. Chem. Soc., 134, 16532 (2012). https://doi.org/10.1021/ja308211n
  20. C. Cheng, C. Yu, Y. Guo, H. Chen, Y. Fang, G. Yu, and Y. Liu, Chem. Commun., 49, 1998 (2013). https://doi.org/10.1039/c2cc38811a
  21. I. Kang, T. K. An, J.-A. Hong, H.-J. Yun, R. Kim, D. S. Chung, C. E. Park, Y.-H. Kim, and S.-K. Kwon, Adv. Mater., 25, 524 (2013). https://doi.org/10.1002/adma.201202867
  22. H. Yang, S. W. Lefevre, C. Y. Ryu, and Z. Bao, Appl. Phys. Lett., 90, 172116 (2007). https://doi.org/10.1063/1.2734387
  23. H. Yang, T. J. Shin, Z. Bao, and C. Y. Ryu, J. Polym. Sci., Part B: Polym. Phys., 45, 1303 (2007). https://doi.org/10.1002/polb.21191
  24. M.-H. Yoon, C. Kim, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc., 128, 12851 (2006). https://doi.org/10.1021/ja063290d
  25. H. Yang, T. J. Shin, M.-M. Ling, K. Cho, C. Y. Ryu, and Z. Bao, J. Am. Chem. Soc., 127, 11542 (2005). https://doi.org/10.1021/ja052478e
  26. D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu, and K. Cho, Adv. Funct. Mater., 15, 77 (2005). https://doi.org/10.1002/adfm.200400054
  27. J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Chem. Rev., 105, 1103 (2005). https://doi.org/10.1021/cr0300789
  28. H. Yang, L. Yang, M.-M. Ling, S. Lastella, D. D. Gandhi, G. Ramanath, Z. Bao, and C. Y. Ryu, J. Phys. Chem. C, 112, 16161 (2008). https://doi.org/10.1021/jp8055224
  29. S. H. Kim, W. M. Yoon, M. Jang, H. Yang, J.-J. Park, and C. E. Park, J. Mater. Chem., 22, 7731 (2012). https://doi.org/10.1039/c2jm13329f
  30. L. Yang and H. Yang, J. Synchrotron Rad., 16, 788 (2009). https://doi.org/10.1107/S0909049509037911
  31. S. H. Kim, M. Jang, H. Yang, J. E. Anthony, and C. E. Park, Adv. Funct. Mater., 21, 2198 (2011). https://doi.org/10.1002/adfm.201002054
  32. T. B. Singh, N. S. Sariciftci, H. Yang, L. Yang, B. Plochberger, and H. Sitter, Appl. Phys. Lett., 90, 213512 (2007). https://doi.org/10.1063/1.2743386