Preparation of Enzyme Electrodes for Biofuel Cells Based on the Immobilization of Glucose Oxidase in Polyion Complex

폴리이온복합체를 이용하여 글루코스 산화효소를 고정화한 바이오전지용 효소전극 제조

  • Nguyen, Linh Thi My (Department of Chemical and Biological Engineering, Gachon University) ;
  • Li, Nan (Department of Chemical and Biological Engineering, Gachon University) ;
  • Yoon, Hyon Hee (Department of Chemical and Biological Engineering, Gachon University)
  • Published : 2013.02.10

Abstract

An emzymatic bioanode for a glucose/oxygen biofuel cell was prepared by the sequential coating of carbon nanotube (CNT), charge transfer complex (CTC) based on tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF), glucose oxidase (GOx), and polyion complex (mixture of poly-L-lysine hydrobromide and poly (sodium 4-styrenesulfonate)) on a glassy carbon electrode. A biocathode was also prepared by the sequential coating of CNT, bilirubin oxidase (BOD), 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), and polyion complex. The effect of CNT and CTC on the electrochemical performance was investigated. The biofuel cell exhibited a promising performance with maximum power densities of 3.6, 10.1, and $46.5{\mu}W/cm^2$ at 5, 20, and 200 mM of glucose concentration, respectively. The result indicates that the biofuel cell architecture prepared in this study can be used in the development of biofuel cells and biosensors.

Keywords

biofuel cell;glucose oxidase;carbon nanotube;charge transfer complex;polyion complex;power density

References

  1. T. Osaka, S. Komaba, A. Amano, Y. Fujino, and H. Mor, Sens. Actuators B, 65, 58 (2000) https://doi.org/10.1016/S0925-4005(99)00423-2
  2. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2 nd ed., John Wiley: New York (2001).
  3. R. A. Bullen, T. C. Arnot, J. B. Lakeman, and F. C. Walsh, Biosens. Bioelectron., 21, 2015 (2006). https://doi.org/10.1016/j.bios.2006.01.030
  4. S. Komaba, T. Mitsuhashi, and S. Shiraishi, Electrochemistry, 76, 55 (2008). https://doi.org/10.5796/electrochemistry.76.55
  5. S. Yabuki, F. Mizutani, and Y. Hirata, J. Electroanal. Chem., 468, 117 (1999). https://doi.org/10.1016/S0022-0728(99)00088-1
  6. I. Ivanov, T. Vidakovic-Koch, and K. Sundmacher, Energies, 3, 803 (2010). https://doi.org/10.3390/en3040803
  7. F. Davis and S. P. J. Higson, Biosens. Bioelectron., 22, 1224 (2007). https://doi.org/10.1016/j.bios.2006.04.029
  8. Y. Kamitaka, S. Tsujimura, N. Setoyama, T. Kajino, and K. Kano, Phys. Chem. Chem. Phys., 9, 1793 (2007). https://doi.org/10.1039/b617650j
  9. L. Stoica, N. Dimcheva, Y. Ackermann, K. Karnicka, D. A. Guschin, P. J. Kulesza, J. Rogalski, D. Haltrich, R. Ludwig, L. Gorton, and W. Schuhmann, Fuel Cells, 9, 53 (2009). https://doi.org/10.1002/fuce.200800033
  10. N. L. Akers, C. M. Moore, and S. D. Minteer, Electrochim. Acta, 50, 2521 (2005). https://doi.org/10.1016/j.electacta.2004.10.080
  11. R. L. Arechederra and S. D. Minteer, Fuel Cells, 9, 63 (2009). https://doi.org/10.1002/fuce.200800029
  12. S. C. Barton, J. Gallaway, and P. Atanassov, Chem. Rev., 104, 4867 (2004). https://doi.org/10.1021/cr020719k
  13. M. Togo, A. Takamura, T. Asai, H. Kaji, and M. Nishizawa, J. Power Sources, 178, 53 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.052
  14. A. M. Kannan, V. Renugopalakrishnan, S. Filipek, P. Li, G. F. Audette, and L. Munukutla, J. Nanosci. Nanotechnol., 9, 1665 (2009). https://doi.org/10.1166/jnn.2009.SI03
  15. S. C. Barton, J. Gallaway, and P. Atanassov, Chem. Rev., 104, 4867 (2004). https://doi.org/10.1021/cr020719k
  16. L. Fernandez and H. Carrero, Electrochim. Acta, 50, 1233 (2005). https://doi.org/10.1016/j.electacta.2004.08.016
  17. F. Li, C. Tang, S. Liu, and G. Ma. Electrochim. Acta, 55, 838 (2010). https://doi.org/10.1016/j.electacta.2009.09.049
  18. R. Antiochia and L. Gorton, Biosens. Bioelectron., 22, 2611 (2007). https://doi.org/10.1016/j.bios.2006.10.023
  19. K. T. Lau, S. A. L. de Fortescu, L. J. Murphy, and J. M. Slater, Electroanal., 15, 975 (2003). https://doi.org/10.1002/elan.200390118
  20. G. F. Khan, M. Ohwa, and W. Wernet, Anal. Chem., 68, 939 (1996).
  21. I. Ivanov, T. Vidakovic-Koch, and K. Sundmacher, J. Power Sources, 196, 9260 (2011). https://doi.org/10.1016/j.jpowsour.2011.07.060
  22. P. Du, S. N. Liu, P. Wu, and C. X. Cai, Electrochim. Acta, 52, 6534 (2007). https://doi.org/10.1016/j.electacta.2007.04.092
  23. M. Holzinger, A. L. Goff, and S. Cosnier, Electrochim. Acta, 82, 179 (2012). https://doi.org/10.1016/j.electacta.2011.12.135
  24. J. B. Kim, H. Jia, and P. Wang, Biotechnol. Adv., 24, 296 (2006). https://doi.org/10.1016/j.biotechadv.2005.11.006