Synthesis and Photovoltaic Properties of Conducting Polymers Based on Phenothiazine

Phenothiazine계 전도성고분자의 합성 및 유기박막태양전지로의 적용 연구

  • Yoo, Han-Sol (Department of Industrial Chemistry, Sangmyung University) ;
  • Park, Yong-Sung (Department of Industrial Chemistry, Sangmyung University)
  • 유한솔 (상명대학교 공업화학과) ;
  • 박용성 (상명대학교 공업화학과)
  • Published : 2013.02.10

Abstract

In this paper, four conducting polymers (poly[(N-butyl-phenothiazine)-sulfide] (PBPS), poly[(N-hexyl-phenothiazine)-sulfide] (PHPS), poly[(N-decyl-phenothiazine)-sulfide] (PDPS), and poly[(N-(2-ethylhexyl)-phenothiazine)-sulfide] (PEHPS)) were synthesized with a high temperature and high pressure reaction. The structures of synthesized polymers were confirmed by $^1H-NMR$ and characterized by UV-Vis, cyclic voltammetry, and GPC. From the UV-Vis absorption spectra, the ${\lambda}_{max}$ values of PBPS, PHPS, PDPS, and PEHPS were 338, 341, 340, and 334 nm, respectively and their optical band gaps were 3.11, 3.13, 3.16, and 3.05 eV, respectively. To evaluate the feasible applicability as a photovoltaic cell, the devices composed of for example, ITO/PEDOT : PSS/polymer (PBPS, PDPS) : $PC_{71}BM$ (1 : 3, w/w)/$BaF_2$/Ba/Al were fabricated using the blends of the PBPS and PDPS as a donor, and $PC_{71}BM$ as an acceptor. Then, the power conversion efficiencies (PCE) of devices were estimated as 0.076% of PBPS and 0.136% of PDPS by solar simulator.

Keywords

phenothiazine derivatives;organic solar cell;conducting polymer

References

  1. M. M. Alam and S. A. Jenekhe, Chem. Mater., 14, 4775 (2002). https://doi.org/10.1021/cm020600s
  2. J. H. Kim, D. Mi, I. N. Kang, W. S. Shin, S. C. Yoon, S. J. Moon, C. Lee, J. K. Lee, and D. H. Hwang, Journal of Nanoscience and Nanotechnology, 11, 5876 (2011). https://doi.org/10.1166/jnn.2011.4505
  3. M. L. Hwang, J. C. Li, E. O. Seo, S. H. Lee, and Y. S. Lee, Korean. Chem. Eng. Res., 49, 95 (2011).
  4. H. Choi and J. Y. Kim, Polym. Sci. Technol., 23, 361 (2012).
  5. S. Woong, J. B. Park, S. J. Park, M. Y. Jo, H. Suh, and J. H. Kim, Appl. Chem. Eng., 22, 15 (2011).
  6. S. Gunes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev., 107, 1324 (2007). https://doi.org/10.1021/cr050149z
  7. H. J. Song, S. M. Lee, J. Y. Lee, B. H. Choi, and D. K. Moon, Synthetic Metals, 161, 2451 (2011). https://doi.org/10.1016/j.synthmet.2011.09.026
  8. X. Guo, F. S. Kim, S. A. Jenekhe, and M. D. Watson, J. Am. Chem. Soc., 131, 7206 (2009). https://doi.org/10.1021/ja810050y
  9. J. D. Yuen, J. Fan, J. Seifter, B. Lim, R. Hufschmid, A. J. Heeger, and F. Wudl, J. Am. Chem. Soc., 133, 20799 (2011). https://doi.org/10.1021/ja205566w
  10. B. S. Ong, Y. Wu, P. Liu, and S. Gardner, J. Am. Chem. Soc., 126, 3378 (2004). https://doi.org/10.1021/ja039772w
  11. L. McCulloch, M. Heeney, M. L. Chabinyc, D. DeLongchamp, R. J. Kline, M. Colle, W. Duffy, D. Fischer, D. Gundlach, B. Hamadani, R. Hamilton, L. Richter, A. Salleo, M. Shkunov, D. Sparrowe, S. Tierney, and W. Zhang, Adv. Mater., 21, 1091 (2009). https://doi.org/10.1002/adma.200801650
  12. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nature Photonics, 3, 297 (2009). https://doi.org/10.1038/nphoton.2009.69
  13. Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater., 22, 135 (2010). https://doi.org/10.1002/adma.200990190
  14. G. Dennier, M. C. Scharber, and C. J. Brabec, Adv. Mater., 21, 1323 (2009). https://doi.org/10.1002/adma.200801283
  15. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, J. Am. Chem. Soc., 130, 3619 (2008). https://doi.org/10.1021/ja710079w
  16. I. W. Hwang, D. Moses, and A. J. Heeger, J. Phys. Chem. C, 112, 4350 (2008). https://doi.org/10.1021/jp075565x
  17. H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, J. Polym. Sci. Part A: Polym. Chem., 48, 4823 (2010). https://doi.org/10.1002/pola.24273
  18. J. Y. Lee, M. H. Choi, H. J. Song, and D. K. Moon, J. Polym. Sci. Part A: Polym. Chem., 48, 4875 (2010). https://doi.org/10.1002/pola.24280
  19. C. J. Lin, W. Y. Lee, C. Lu, H. W. Lin, and W. C. Chen, Macromolecules, 44, 9565 (2011). https://doi.org/10.1021/ma202017q
  20. L. Yang, J. K. Feng, and A. M. Ren, J. Org. Chem., 70, 5987 (2005). https://doi.org/10.1021/jo050665p
  21. D. H. Yun, H. S. Yoo, S. W. Heo, H. J. Song, D. K. Moon, J. W. Woo, and Y. S. Park, J. Ind. Eng. Chem., 19, 421 (2013). https://doi.org/10.1016/j.jiec.2012.08.033
  22. D. H. Yun, H. S. Yoo, Y. S. Park, and J. W. Woo, Advanced Materials Research, 418, 153 (2012).
  23. H. S. Yoo, D. H. Yun, T. W. Ko, Y. S. Park, and J. W. Woo, Advanced Material Research, in press (2012).
  24. M. Sailer, M. Nonnenmacher, T. Oeser, and T. J. J. Muller, Eur. J. Org. Chem., 2, 423 (2006).
  25. J. Lee, J. I. Lee, M. J. Park, Y. K. Jung, N. S. Cho, H. J. Cho, D. H. Hwang, S. K. Lee, J. H. Park, J. Hong, H. Y. Chu, and H. K. Shim, J. Polym. Sci. Part A: Polym. Chem., 45, 1236 (2007). https://doi.org/10.1002/pola.21890
  26. Y. H. Seo, W. H. Lee, J. H. Park, C. Bae, Y. Hong, J. W. Park, and I. N. Kang, J. Polym. Sci. Part A: Polym. Chem., 50, 649 (2012). https://doi.org/10.1002/pola.25074
  27. J. Y. Choi, H. L. Choi, J. H. Kim, and B. Lee, Journal of Korean Society for Imaging Science & Technology, 13, 90 (2007).
  28. N. S. Cho, J. H. Park, S. K. Lee, J. H. Lee, H. K. Shim, M. J. Park, D. H. Hwang, and B. J. Jung, Macromolecules, 39, 177 (2006). https://doi.org/10.1021/ma051784+
  29. J. H. Yoon and K. S. Ryu, KIC News, 11, 15 (2008).
  30. H. Kim and K. Lee, Polym. Sci. Technol., 14, 15 (2003).
  31. J. Y. Lee, S. M. Lee, K. W. Song, and D. K. Moon, Eur. Polym. J., 48, 532 (2012). https://doi.org/10.1016/j.eurpolymj.2011.12.006
  32. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt : Res. Appl., 20, 12 (2012). https://doi.org/10.1002/pip.2163
  33. J. S. Lee, Journal of the Korean Solar Energy Society, 2, 35 (2003).
  34. Q. Hou, X. Xu, T. Guo, X. Zeng, S. Luo, and L. Yang, Eur. Polym. J., 46, 2365 (2010). https://doi.org/10.1016/j.eurpolymj.2010.09.015
  35. G. Y. Chen, Y. H. Chen, Y. J. Chou, M. S. Su, C. M. Chen, and K. H. Wei, Chem. Commun., 47, 5064 (2011). https://doi.org/10.1039/c1cc10585j
  36. K. Ranjith, S. K. Swathi, A. Malavika, P. C. Ramamurthy, Sol. Energy Mater. Sol. Cells, 105, 263 (2012). https://doi.org/10.1016/j.solmat.2012.06.022
  37. J. Kim, S. H. Park, J. Kim, S. Cho, Y. Jin, J. Y. Shim, H. Shin, S. Kwon, I. Kim, K, Lee, A. J. Heeger, and H. Suh, J. Polym. Sci., Part A: Polym. Chem., 49, 369 (2011). https://doi.org/10.1002/pola.24435
  38. L. Biniek, S. Fall, C. L. Chochos, D. V. Anokhin, D. A. Ivanov, N. Leclerc, P. Leveque, and T. Heiser, Macromolecules, 43, 9779 (2010). https://doi.org/10.1021/ma102164c
  39. J. Liu, Y. Cheng, Z. Xie, Y. Geng, L. Wang, X. Jing, and F. Wang, Adv. Mater., 20, 1357 (2008). https://doi.org/10.1002/adma.200701705
  40. J. W. Park, S. J. Park, Y. H. Kim, D. C. Shin, H. You, and S. K. Kwon, Polymer, 50, 102 (2009). https://doi.org/10.1016/j.polymer.2008.10.056