Synthesis and Photovoltaic Properties of Conducting Polymers Based on Phenothiazine

Phenothiazine계 전도성고분자의 합성 및 유기박막태양전지로의 적용 연구

  • Yoo, Han-Sol (Department of Industrial Chemistry, Sangmyung University) ;
  • Park, Yong-Sung (Department of Industrial Chemistry, Sangmyung University)
  • 유한솔 (상명대학교 공업화학과) ;
  • 박용성 (상명대학교 공업화학과)
  • Published : 2013.02.10


In this paper, four conducting polymers (poly[(N-butyl-phenothiazine)-sulfide] (PBPS), poly[(N-hexyl-phenothiazine)-sulfide] (PHPS), poly[(N-decyl-phenothiazine)-sulfide] (PDPS), and poly[(N-(2-ethylhexyl)-phenothiazine)-sulfide] (PEHPS)) were synthesized with a high temperature and high pressure reaction. The structures of synthesized polymers were confirmed by $^1H-NMR$ and characterized by UV-Vis, cyclic voltammetry, and GPC. From the UV-Vis absorption spectra, the ${\lambda}_{max}$ values of PBPS, PHPS, PDPS, and PEHPS were 338, 341, 340, and 334 nm, respectively and their optical band gaps were 3.11, 3.13, 3.16, and 3.05 eV, respectively. To evaluate the feasible applicability as a photovoltaic cell, the devices composed of for example, ITO/PEDOT : PSS/polymer (PBPS, PDPS) : $PC_{71}BM$ (1 : 3, w/w)/$BaF_2$/Ba/Al were fabricated using the blends of the PBPS and PDPS as a donor, and $PC_{71}BM$ as an acceptor. Then, the power conversion efficiencies (PCE) of devices were estimated as 0.076% of PBPS and 0.136% of PDPS by solar simulator.


phenothiazine derivatives;organic solar cell;conducting polymer


  1. M. M. Alam and S. A. Jenekhe, Chem. Mater., 14, 4775 (2002).
  2. J. H. Kim, D. Mi, I. N. Kang, W. S. Shin, S. C. Yoon, S. J. Moon, C. Lee, J. K. Lee, and D. H. Hwang, Journal of Nanoscience and Nanotechnology, 11, 5876 (2011).
  3. M. L. Hwang, J. C. Li, E. O. Seo, S. H. Lee, and Y. S. Lee, Korean. Chem. Eng. Res., 49, 95 (2011).
  4. H. Choi and J. Y. Kim, Polym. Sci. Technol., 23, 361 (2012).
  5. S. Woong, J. B. Park, S. J. Park, M. Y. Jo, H. Suh, and J. H. Kim, Appl. Chem. Eng., 22, 15 (2011).
  6. S. Gunes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev., 107, 1324 (2007).
  7. H. J. Song, S. M. Lee, J. Y. Lee, B. H. Choi, and D. K. Moon, Synthetic Metals, 161, 2451 (2011).
  8. X. Guo, F. S. Kim, S. A. Jenekhe, and M. D. Watson, J. Am. Chem. Soc., 131, 7206 (2009).
  9. J. D. Yuen, J. Fan, J. Seifter, B. Lim, R. Hufschmid, A. J. Heeger, and F. Wudl, J. Am. Chem. Soc., 133, 20799 (2011).
  10. B. S. Ong, Y. Wu, P. Liu, and S. Gardner, J. Am. Chem. Soc., 126, 3378 (2004).
  11. L. McCulloch, M. Heeney, M. L. Chabinyc, D. DeLongchamp, R. J. Kline, M. Colle, W. Duffy, D. Fischer, D. Gundlach, B. Hamadani, R. Hamilton, L. Richter, A. Salleo, M. Shkunov, D. Sparrowe, S. Tierney, and W. Zhang, Adv. Mater., 21, 1091 (2009).
  12. S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nature Photonics, 3, 297 (2009).
  13. Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater., 22, 135 (2010).
  14. G. Dennier, M. C. Scharber, and C. J. Brabec, Adv. Mater., 21, 1323 (2009).
  15. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, J. Am. Chem. Soc., 130, 3619 (2008).
  16. I. W. Hwang, D. Moses, and A. J. Heeger, J. Phys. Chem. C, 112, 4350 (2008).
  17. H. Padhy, J. H. Huang, D. Sahu, D. Patra, D. Kekuda, C. W. Chu, and H. C. Lin, J. Polym. Sci. Part A: Polym. Chem., 48, 4823 (2010).
  18. J. Y. Lee, M. H. Choi, H. J. Song, and D. K. Moon, J. Polym. Sci. Part A: Polym. Chem., 48, 4875 (2010).
  19. C. J. Lin, W. Y. Lee, C. Lu, H. W. Lin, and W. C. Chen, Macromolecules, 44, 9565 (2011).
  20. L. Yang, J. K. Feng, and A. M. Ren, J. Org. Chem., 70, 5987 (2005).
  21. D. H. Yun, H. S. Yoo, S. W. Heo, H. J. Song, D. K. Moon, J. W. Woo, and Y. S. Park, J. Ind. Eng. Chem., 19, 421 (2013).
  22. D. H. Yun, H. S. Yoo, Y. S. Park, and J. W. Woo, Advanced Materials Research, 418, 153 (2012).
  23. H. S. Yoo, D. H. Yun, T. W. Ko, Y. S. Park, and J. W. Woo, Advanced Material Research, in press (2012).
  24. M. Sailer, M. Nonnenmacher, T. Oeser, and T. J. J. Muller, Eur. J. Org. Chem., 2, 423 (2006).
  25. J. Lee, J. I. Lee, M. J. Park, Y. K. Jung, N. S. Cho, H. J. Cho, D. H. Hwang, S. K. Lee, J. H. Park, J. Hong, H. Y. Chu, and H. K. Shim, J. Polym. Sci. Part A: Polym. Chem., 45, 1236 (2007).
  26. Y. H. Seo, W. H. Lee, J. H. Park, C. Bae, Y. Hong, J. W. Park, and I. N. Kang, J. Polym. Sci. Part A: Polym. Chem., 50, 649 (2012).
  27. J. Y. Choi, H. L. Choi, J. H. Kim, and B. Lee, Journal of Korean Society for Imaging Science & Technology, 13, 90 (2007).
  28. N. S. Cho, J. H. Park, S. K. Lee, J. H. Lee, H. K. Shim, M. J. Park, D. H. Hwang, and B. J. Jung, Macromolecules, 39, 177 (2006).
  29. J. H. Yoon and K. S. Ryu, KIC News, 11, 15 (2008).
  30. H. Kim and K. Lee, Polym. Sci. Technol., 14, 15 (2003).
  31. J. Y. Lee, S. M. Lee, K. W. Song, and D. K. Moon, Eur. Polym. J., 48, 532 (2012).
  32. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Prog. Photovolt : Res. Appl., 20, 12 (2012).
  33. J. S. Lee, Journal of the Korean Solar Energy Society, 2, 35 (2003).
  34. Q. Hou, X. Xu, T. Guo, X. Zeng, S. Luo, and L. Yang, Eur. Polym. J., 46, 2365 (2010).
  35. G. Y. Chen, Y. H. Chen, Y. J. Chou, M. S. Su, C. M. Chen, and K. H. Wei, Chem. Commun., 47, 5064 (2011).
  36. K. Ranjith, S. K. Swathi, A. Malavika, P. C. Ramamurthy, Sol. Energy Mater. Sol. Cells, 105, 263 (2012).
  37. J. Kim, S. H. Park, J. Kim, S. Cho, Y. Jin, J. Y. Shim, H. Shin, S. Kwon, I. Kim, K, Lee, A. J. Heeger, and H. Suh, J. Polym. Sci., Part A: Polym. Chem., 49, 369 (2011).
  38. L. Biniek, S. Fall, C. L. Chochos, D. V. Anokhin, D. A. Ivanov, N. Leclerc, P. Leveque, and T. Heiser, Macromolecules, 43, 9779 (2010).
  39. J. Liu, Y. Cheng, Z. Xie, Y. Geng, L. Wang, X. Jing, and F. Wang, Adv. Mater., 20, 1357 (2008).
  40. J. W. Park, S. J. Park, Y. H. Kim, D. C. Shin, H. You, and S. K. Kwon, Polymer, 50, 102 (2009).