Degradation of Pesticides in Wastewater Using Plasma Process Coupled with Photocatalyst

광촉매를 병합한 플라즈마 공정을 이용한 폐수에 함유된 살충제 분해

  • Jang, Doo Il (Department of Chemical & Biological Engineering, Jeju National University) ;
  • Kim, Kil-Seong (Jeju Provincial Research Institute of Health and Environment) ;
  • Hyun, Young Jin (Department of Chemical & Biological Engineering, Jeju National University)
  • 장두일 (제주대학교 생명화학공학과) ;
  • 김길성 (제주특별자치도보건환경연구원) ;
  • 현영진 (제주대학교 생명화학공학과)
  • Published : 2013.02.10

Abstract

Nonthermal plasma hybridized with photocatalysts is proven to be an effective tool to degrade toxic organics in wastewater. In this study, a specially designed dielectric barrier discharge (DBD) plasma system combined with photocatalysts was applied to decompose pestiticides such as dichlorovos, carbofuran and methidathon, which are frequently used in the golf courses and the orange plantations. The degradations of the pesticides in single and coupled systems were evaluated. The single system was used with ozone plasma which consisted of electrons, radicals, ions produced by oxygen gas and air, with and without ultra-violet (UV) irradiation, respectively. The coupled systems utilized the air-derived ozone plasma combined with zinc oxide, titanium dioxide and graphite oxide photocatalyst activated by UV. The graphite oxide was synthesized by a modified Hummer's method and characterized using FTIR spectrometer. It was elucidated that the plasma reaction with graphite oxide (0.01 g/L) brought about almost 100% of degradation degrees for dichlorovos and carbofuran in 60 min, as compared with the performances showed by no catalyst condition. The photocatalyst-hybridized plasma in the presence of UV irradiation was proven to be an effective alternative for degrading pesticides.

Keywords

dielectric barrier discharge plasma;pesticides degradation;graphite oxide;photocatalyst-hybridized plasma;alternative

References

  1. C. Lu, D. B. Barr, and M. A. Person, Health Perspect, 116, 537 (2008). https://doi.org/10.1289/ehp.10912
  2. M. Naddaf, S. Saloum, and B. Alkhaled, Vacuum, 85, 421 (2010). https://doi.org/10.1016/j.vacuum.2010.08.004
  3. S. E. Duirk, L. M. Desetto, G. M. Davis, C. Lindell, and C. T. Cornelison, Water Res., 44, 761 (2010). https://doi.org/10.1016/j.watres.2009.10.012
  4. J. Lee, J. K. Lee, S. Uhm, and H. J. Lee, Appl. Chem. Eng., 22, 235 (2011).
  5. Z. W. Min, S.-M. Hong, C.-K. Mok, and G.-J. Im, J. K. Soc. Pesticide Sci., 16, 11 (2012). https://doi.org/10.7585/kjps.2012.16.1.011
  6. S. Ahmed, M. G. Rasul, R. Brown, and M. A. Hashi, J. Environ. Manage., 92, 311 (2011). https://doi.org/10.1016/j.jenvman.2010.08.028
  7. D. I. Jang, T. H. Lim, S. B. Lee, Y. S. Mok, and H. Park, Appl. Chem. Eng., 23, 608 (2012).
  8. H.-B. Cho, M.-H. Suh, and Y.-H. Park, Appl. Chem. Eng., 20, 28 (2009).
  9. Y. Bai, J. Chen, H. Mu, C. Zhang, and B. Li, J. Agric. Food Chem., 57, 6238 (2009). https://doi.org/10.1021/jf900995d
  10. A. V. Lozhechnik, A. L. Mosse, V. V. Savichin, D. S. Skomor okhov, and I. V. Khvedchin, J. Eng. Phys. Thermophys., 84, 1114 (2011). https://doi.org/10.1007/s10891-011-0574-9
  11. T. Zhu, J. Li, Y. Jin, Y. Liang, and G. Ma, Int. J. Environ. Sci. Tech., 5, 375 (2008). https://doi.org/10.1007/BF03326032
  12. W. Cho, Y. C. Kim, and S. S. Kim, J. Ind. Eng. Chem., 16, 20 (2010). https://doi.org/10.1016/j.jiec.2010.01.027
  13. T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang, and H. Tang, Adv. Funct. Mater., 20, 2255 (2010). https://doi.org/10.1002/adfm.201000274
  14. W.-C. Oh, M.-L. Chen, K. Zhang, and F.-J. Zhang, J. Korean Phys. Soc., 56, 1097 (2010). https://doi.org/10.3938/jkps.56.1097
  15. X. L. Hao, M. H. Zhou, and L. C. Lei, J. Photochem. Photobiol. A, 136, 163 (2006).
  16. K. H. Wang, Y.-H. Hscieh, and M.-Y. Chou, Appl. Catal. B, 21, 1 (1999). https://doi.org/10.1016/S0926-3373(98)00116-7
  17. K. Krishnamoorthy, R. Mohen, and S.-J. Kim, Appl. Phys. Lett., 98, 244101 (2011). https://doi.org/10.1063/1.3599453
  18. W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1338 (1958). https://doi.org/10.1021/ja01539a016
  19. M. Seredych, J. A. Rossin, and T. J. Bendosz, Carbon, 49, 4392 (2011). https://doi.org/10.1016/j.carbon.2011.06.032
  20. Y. S. Mok, J.-O. Jo, and J. C. Whitehead, Chem. Eng. J., 142, 56 (2008). https://doi.org/10.1016/j.cej.2007.11.012
  21. V. Gunasekaran, PhD Dissertation, Jeju National University, Korea (2011).
  22. P. Kopf, E. Gilbert, and S. H. Eberle, J. Photochem. Photobiol. A., 136, 163 (2000). https://doi.org/10.1016/S1010-6030(00)00331-2
  23. K. Okamoto, Y. Yamamoto, H. Tanaka, M. Tanaka, and A. Itaya, Bull. Chem. Soc. Jpn., 58, 2015 (1985). https://doi.org/10.1246/bcsj.58.2015
  24. A. House, H. Lachheb, and M. Ksibi, Appl. Catal. B, 31, 145 (2001). https://doi.org/10.1016/S0926-3373(00)00276-9
  25. B. Yanhon, C. Jierong, Y. Yun, G. Limei, and Z. Chunhong, Chemosphere, 81, 408 (2010). https://doi.org/10.1016/j.chemosphere.2010.06.071