Preparation of Palladium on Carbon for Hydrogenation Catalyst Using [Bmim][$CF_3SO_3$] as an Effective Solvent

기능성 용매인 [Bmim][$CF_3SO_3$]를 이용한 수소화반응용 탄소 담지 팔라듐 촉매 제조

  • Tae, Hyunman (Department of Chemical Engineering, Seoul National University of Science & Technology) ;
  • Jeon, Seung Hye (Department of Chemical Engineering, Seoul National University of Science & Technology) ;
  • Yoo, Kye Sang (Department of Chemical Engineering, Seoul National University of Science & Technology)
  • 태현만 (서울과학기술대학교 화공생명공학과) ;
  • 전승혜 (서울과학기술대학교 화공생명공학과) ;
  • 유계상 (서울과학기술대학교 화공생명공학과)
  • Published : 2013.02.10

Abstract

Palladium particles were synthesized with 1-buthyl-3-methylimidazolium trifluoromethanesulfonate ([Bmim][$CF_3SO_3$]) as an effective solvent during the synthesis. The morphology of the particles was affected by the concentration of [Bmim][$CF_3SO_3$]. Furthermore, the palladium on carbon powder was prepared with various [Bmim][$CF_3SO_3$] concentrations and calcinations temperatures as a catalyst for hexafluoropropylene hydrogenation. Catalytic activity was varied by both conditions significantly. Under the identical condition, the catalyst prepared by the same mole ratio of [Bmim][$CF_3SO_3$] and palladium, and calcined at $500^{\circ}C$ was the most active in this reaction.

Keywords

palladium catalyst;hydrogenation;[Bmim][$CF_3SO_3$];effective solvent

References

  1. Y. Li, X. M. Hong, D. M. Collard, and M. A. El-Sayed, Org. Lett., 2, 2385 (2000). https://doi.org/10.1021/ol0061687
  2. S.-W. Kim, M. Kim, W. Y. Lee, and T. Hyeon, J. Am. Chem. Soc., 124, 7642 (2002). https://doi.org/10.1021/ja026032z
  3. R. Narayanan and M. A. El-Sayed, Nano Lett., 4, 1343 (2004). https://doi.org/10.1021/nl0495256
  4. S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, and P. Yang, Nat. Mater., 6, 692 (2007). https://doi.org/10.1038/nmat1957
  5. K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, and G. A. Somorjai, Nano Lett., 7, 3097 (2007). https://doi.org/10.1021/nl0716000
  6. C. Wang, H. Daimon, T. Onodera, T. Koda, and S. Sun, Angew. Chem, Int. Ed., 47, 3588 (2008). https://doi.org/10.1002/anie.200800073
  7. P. Wasserscheid and W. Keim, Angew. Chem. Int. Ed., 39, 3773 (2000).
  8. T. Welton, Chem. Rev., 99, 2071 (1999). https://doi.org/10.1021/cr980032t
  9. K. Avril, B. Collier, US patent 0021849 A1 (2011).
  10. C. S. Kim, H. Tae, S. H. Jeon, and K. S. Yoo, Res. Chem. Intermed (in press).
  11. G. S. Fonseca, G. Machado, S. R. Teixeira, G. H. Fecher, J. Morais, M. C. M. Alves, and J. Dupont, J. Colloid Interface Sci., 301, 193 (2006). https://doi.org/10.1016/j.jcis.2006.04.073
  12. M. Fernandez-Garcia, A. Martinez-Arias, L. N. Salamanca, J. M. Coronado, J. A. Anderson, J. C. Conesa, and J. Soria, J. Catal., 187, 474 (1999). https://doi.org/10.1006/jcat.1999.2624
  13. Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, and N. Hamada, Nature, 418, 164 (2002). https://doi.org/10.1038/nature00893
  14. J. M. Thomas, B. F. G. Johnson, R. Raja, G. Sankar, and P. A. Midgley, Acc. Chem. Res., 36, 20 (2003). https://doi.org/10.1021/ar990017q
  15. L. Schlapbach and A. Zuttel, Nature, 414, 353 (2001). https://doi.org/10.1038/35104634
  16. M. T. Reetz and E. Westermann, Angew. Chem, Int. Ed., 39, 165 (2000). https://doi.org/10.1002/(SICI)1521-3773(20000103)39:1<165::AID-ANIE165>3.0.CO;2-B