Eco-friendly Esterification of Dicarboxylic Acid Using Recovered Boric Acid

회수 Boric Acid를 이용한 Dicarboxylic Acid의 환경친화적 에스터화 반응

  • Park, Jun-Seong (Department of Industrial Chemistry, Sangmyung University) ;
  • Woo, Je-Wan (Department of Industrial Chemistry, Sangmyung University)
  • 박준성 (상명대학교 공업화학과) ;
  • 우제완 (상명대학교 공업화학과)
  • Published : 2013.02.10

Abstract

In this study, the boric acid which is a by-product in the esterification process to obtain norbornene diester derivatives was recovered, and then its reusability for esterification of norbornene was investigated. Four types of trialkyl borate (tributyl borate, tripentyl borate, and triisopentyl borate, trihexyl borate) were synthesized through the esterification with boric acid and four types of alcohol. Then, diester derivatives were synthesized by esterification with the synthesized trialkyl borate and norbornene dicarboxylic acid. The conversion of norbornene dicarboxylic acid is 89.50~99.31%. The boric acid which is a by-product in the esterification were recovered with NaCl salt and used for synthesizing trialkyl borate. The recovery rate was 92.43~99.35 %. When the recovered trialkyl borate was used in esterification, there are little losses of the yield. Since boric acid which is a major by-product is able to be recovered, the process is expected to be a clean technology to prevent an environmental pollution by the emission of chemical compounds.

Keywords

trialkyl borate;esterification;recovered boric acid;norbornene dicarboxylate

References

  1. A. Corma, H. Garcia, S. Iborra, and J. Primo, J. Catal., 120, 78 (1989). https://doi.org/10.1016/0021-9517(89)90252-2
  2. Y. Ma, Q. L. Wang, H. Yan, X. Ji, and Q. Qiu, Appl. Catal., A, 139, 51 (1996). https://doi.org/10.1016/0926-860X(95)00328-2
  3. S. R. Kirumakki, N. Nagraju, K. V. R. Chary, and S. Narayanan, Appl. Catal., A, 248, 161 (2003). https://doi.org/10.1016/S0926-860X(03)00152-2
  4. M. Arabi, M. M. Amini, M. Abedini, A. Nemati, and M. Alizadeh, J. Mol. Catal. A: Chem., 200, 105 (2003). https://doi.org/10.1016/S1381-1169(03)00043-8
  5. T. S. Thorat, V. M. Yadav, and G. D. Yadav, Appl. Catal., A, 90, 73 (1992). https://doi.org/10.1016/0926-860X(92)85050-L
  6. M. J. Verhoef, P. J. Kooyman, J. A. Peters, and H. V. Bekkum, Microporous Mesoporous Mater., 27, 365 (1999). https://doi.org/10.1016/S1387-1811(98)00269-8
  7. Y. Mansoori, F. S. Tataroglu, and M. Sadaghian, Green Chem., 7, 870 (2005). https://doi.org/10.1039/b510164f
  8. Y. Mansoori, F. T. Seyidov, S. Bohlooli, M. R. Zamanloo, and G. H. Imanzadeh, Chin. J. Chem., 25, 1878 (2007). https://doi.org/10.1002/cjoc.200790346
  9. D. Craig, J. Am. Chem. Soc., 73, 4889 (1951). https://doi.org/10.1021/ja01154a124
  10. M. F. Lappert, Chem. Rev., 56, 959 (1956). https://doi.org/10.1021/cr50011a002
  11. Y. W. Jin, J. S. Park, Y. S. Park, and J. W. Woo, Adv. Mater. Res., 415, 1849 (2012).
  12. Kirk and Othmer, D. F., in Mary, H. G.(Ed), J. Wiley & Sons, New York, 4th edn, 9, 386 (1997).
  13. G. D. Yadav and P. H. Mehta, Ind. Eng. Chem., 33, 2198 (1994). https://doi.org/10.1021/ie00033a025
  14. M. L. Bender, Chem. Rev., 60, 53 (1960). https://doi.org/10.1021/cr60203a005
  15. G. D. Yadav and J. J. Nair, Microporous Mesoporous Mater., 33, 1 (1999). https://doi.org/10.1016/S1387-1811(99)00147-X
  16. F. T. Sejidov, Y Mansoori, and N. Goodarzi, J. Mol. Catal. A: Chem., 240, 186 (2005).
  17. C. M. Garcia, S. Teixeira, L. L. Marciniuk, and U. Schuchardt, Bioresour. Technol., 99, 6608 (2008). https://doi.org/10.1016/j.biortech.2007.09.092