Enhancement of Selective Removal of Nitrate Ions from a Mixture of Anions Using a Carbon Electrode Coated with Ion-exchange Resin Powder

이온교환수지 분말이 코팅된 탄소전극을 이용한 음이온 혼합용액에서 Nitrate 이온의 선택적 제거율 향상

  • Yeo, Jin-Hee (Department of Chemical Engineering, Kongju National University) ;
  • Choi, Jae-Hwan (Department of Chemical Engineering, Kongju National University)
  • Published : 2013.02.10


We fabricated a composite carbon electrode to remove nitrate ions selectively from a mixed solution of anions. The electrode was fabricated by coating the surface of a carbon electrode with the nitrate-selective anion exchange resin (BHP55, Bonlite Co.) powder. We performed capacitive deionization (CDI) experiments on a mixed solution containing chloride, nitrate, and sulfate ions using a BHP55 cell constructed with the fabricated electrode. The removal of nitrate ions in the BHP55 cell was compared to that of a membrane capacitive deionization (MCDI) cell constructed with ion exchange membranes. The total quantity of ions adsorbed in BHP55 cell was $38.3meq/m^2$, which is 31% greater than that of MCDI cell. In addition, the number of nitrate adsorption in the BHP55 cell was $15.9meq/m^2$ (42% of total adsorption), 2.1 times greater than the adsorption in the MCDI cell. The results showed that the fabricated composite carbon electrode is very effective in the selective removal of nitrate ions from a mixed solution of anions.


  1. M. A. Anderson, A. L. Cudero, and J. Palma, Electrochim. Acta, 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  2. Y. Oren, Desalination, 228, 10 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  3. T. J. Welgemoed and C. F. Schutte, Desalination, 183, 327 (2005). https://doi.org/10.1016/j.desal.2005.02.054
  4. M. Mossad and L. Zou, J. Hazard. Mater., 213, 491 (2012).
  5. Y. J. Kim and J. H. Choi, Sep. Purif. Technol., 71, 70 (2010). https://doi.org/10.1016/j.seppur.2009.10.026
  6. S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. W. Park, H. Hojima, J. Lee, and S. H. Moon, Water Res., 44, 2267 (2010). https://doi.org/10.1016/j.watres.2009.10.020
  7. P. M. Biesheuvel, J. Colloid Interface Sci., 332, 258 (2009). https://doi.org/10.1016/j.jcis.2008.12.018
  8. L. M. Chang, X. Y. Duan, and W. Liu, Desalination, 270, 285 (2011). https://doi.org/10.1016/j.desal.2011.01.008
  9. M. W. Ryoo, and G. Seo, Water. Res., 37, 1527 (2003). https://doi.org/10.1016/S0043-1354(02)00531-6
  10. B. H. Park, Y. J. Kim, J. S. Park, and J. H. Choi, J. Ind. Eng. Chem., 17, 717 (2011). https://doi.org/10.1016/j.jiec.2011.05.015
  11. C. J. Gabelich, T. D. Tran, and I. H. "MEL" Suffet, Environ. Sci. Technol., 36, 3010 (2002). https://doi.org/10.1021/es0112745
  12. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun, Water Res., 42, 4923 (2008). https://doi.org/10.1016/j.watres.2008.09.026
  13. H. Li, L. Zou, L. Pan, and Z. Sun, Environ. Sci. Technol., 44, 8692 (2010). https://doi.org/10.1021/es101888j
  14. L. Zou, G. Morris, and D. Qi, Desalination, 225, 329 (2008). https://doi.org/10.1016/j.desal.2007.07.014
  15. M. Haro, G. Rasines, C. Macias, C. O. Ania, Carbon, 49, 3723 (2011). https://doi.org/10.1016/j.carbon.2011.05.001
  16. H. Li, L. Zou, L. Pan, and Z. Sun, Sep. Purif. Technol., 75, 8 (2010). https://doi.org/10.1016/j.seppur.2010.07.003
  17. M. D. Andelman, CA Patent 2444390 (2002).
  18. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination, 196, 125 (2006). https://doi.org/10.1016/j.desal.2006.01.011
  19. Y. J. Kim and J. H. Choi, Water Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  20. C. E. Harland, Ion Exchange: Theory and Practice, Thomas Graham House, Cambridge (1994).
  21. B. E. Conway, Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).
  22. A. J. Bard and L. R. Faulkner, Electrochemical Methods : Fundamentals and Application, 2nd Ed., John Wiley & Sons, Inc. (2001).
  23. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam (2004).