Enhancement of Selective Removal of Nitrate Ions from a Mixture of Anions Using a Carbon Electrode Coated with Ion-exchange Resin Powder

이온교환수지 분말이 코팅된 탄소전극을 이용한 음이온 혼합용액에서 Nitrate 이온의 선택적 제거율 향상

  • Yeo, Jin-Hee (Department of Chemical Engineering, Kongju National University) ;
  • Choi, Jae-Hwan (Department of Chemical Engineering, Kongju National University)
  • 여진희 (공주대학교 화학공학부) ;
  • 최재환 (공주대학교 화학공학부)
  • Published : 2013.02.10

Abstract

We fabricated a composite carbon electrode to remove nitrate ions selectively from a mixed solution of anions. The electrode was fabricated by coating the surface of a carbon electrode with the nitrate-selective anion exchange resin (BHP55, Bonlite Co.) powder. We performed capacitive deionization (CDI) experiments on a mixed solution containing chloride, nitrate, and sulfate ions using a BHP55 cell constructed with the fabricated electrode. The removal of nitrate ions in the BHP55 cell was compared to that of a membrane capacitive deionization (MCDI) cell constructed with ion exchange membranes. The total quantity of ions adsorbed in BHP55 cell was $38.3meq/m^2$, which is 31% greater than that of MCDI cell. In addition, the number of nitrate adsorption in the BHP55 cell was $15.9meq/m^2$ (42% of total adsorption), 2.1 times greater than the adsorption in the MCDI cell. The results showed that the fabricated composite carbon electrode is very effective in the selective removal of nitrate ions from a mixed solution of anions.

Keywords

ion exchange resin;carbon electrode;capacitive deionization;nitrate;selective removal

References

  1. B. E. Conway, Electrochemical Supercapacitors : Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).
  2. A. J. Bard and L. R. Faulkner, Electrochemical Methods : Fundamentals and Application, 2nd Ed., John Wiley & Sons, Inc. (2001).
  3. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam (2004).
  4. M. A. Anderson, A. L. Cudero, and J. Palma, Electrochim. Acta, 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  5. Y. Oren, Desalination, 228, 10 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  6. T. J. Welgemoed and C. F. Schutte, Desalination, 183, 327 (2005). https://doi.org/10.1016/j.desal.2005.02.054
  7. M. Mossad and L. Zou, J. Hazard. Mater., 213, 491 (2012).
  8. Y. J. Kim and J. H. Choi, Sep. Purif. Technol., 71, 70 (2010). https://doi.org/10.1016/j.seppur.2009.10.026
  9. S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. W. Park, H. Hojima, J. Lee, and S. H. Moon, Water Res., 44, 2267 (2010). https://doi.org/10.1016/j.watres.2009.10.020
  10. P. M. Biesheuvel, J. Colloid Interface Sci., 332, 258 (2009). https://doi.org/10.1016/j.jcis.2008.12.018
  11. L. M. Chang, X. Y. Duan, and W. Liu, Desalination, 270, 285 (2011). https://doi.org/10.1016/j.desal.2011.01.008
  12. M. W. Ryoo, and G. Seo, Water. Res., 37, 1527 (2003). https://doi.org/10.1016/S0043-1354(02)00531-6
  13. B. H. Park, Y. J. Kim, J. S. Park, and J. H. Choi, J. Ind. Eng. Chem., 17, 717 (2011). https://doi.org/10.1016/j.jiec.2011.05.015
  14. C. J. Gabelich, T. D. Tran, and I. H. "MEL" Suffet, Environ. Sci. Technol., 36, 3010 (2002). https://doi.org/10.1021/es0112745
  15. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun, Water Res., 42, 4923 (2008). https://doi.org/10.1016/j.watres.2008.09.026
  16. H. Li, L. Zou, L. Pan, and Z. Sun, Environ. Sci. Technol., 44, 8692 (2010). https://doi.org/10.1021/es101888j
  17. L. Zou, G. Morris, and D. Qi, Desalination, 225, 329 (2008). https://doi.org/10.1016/j.desal.2007.07.014
  18. M. Haro, G. Rasines, C. Macias, C. O. Ania, Carbon, 49, 3723 (2011). https://doi.org/10.1016/j.carbon.2011.05.001
  19. H. Li, L. Zou, L. Pan, and Z. Sun, Sep. Purif. Technol., 75, 8 (2010). https://doi.org/10.1016/j.seppur.2010.07.003
  20. M. D. Andelman, CA Patent 2444390 (2002).
  21. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination, 196, 125 (2006). https://doi.org/10.1016/j.desal.2006.01.011
  22. Y. J. Kim and J. H. Choi, Water Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  23. C. E. Harland, Ion Exchange: Theory and Practice, Thomas Graham House, Cambridge (1994).