Synthesis of Tungsten Doped Vanadium Dioxide and Its Thermochromic Property Studies

텅스텐이 도핑된 바나듐 산화물의 합성 및 열전이 특성 연구

  • Hwang, Kyung-Jun (Eco-Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Jo, Cho Won (Department of Chemical and Biological Engineering, Korea University) ;
  • Yoo, Jung Whan (Eco-Composite Materials Center, Korea Institute of Ceramic Engineering & Technology)
  • 황경준 (한국세라믹기술원 에코복합소재센터) ;
  • 조초원 (고려대학교 화공생명공학과) ;
  • 유중환 (한국세라믹기술원 에코복합소재센터)
  • Published : 2013.02.10


In this work, we have prepared tungsten doped vanadium oxide ($W-VO_2$) particles with a low phase transition temperature. $W-VO_2$ particles were synthesized via thermolysis method using vanadyl (IV) sulfate and ammonium bicarbonate as precursors. The structure and thermochromic property of synthesized $W-VO_2$ particles were investigated by FE-SEM, EDS, XRD, XPS, and DSC analysis. The prepared $W-VO_2$ showed a nearly platy morphology, which indicates that the tungsten was successfully doped in the crystal lattices of $VO_2$. $W-VO_2$ nanoparticles with the size of 60 nm exhibited a monoclinic crystal structure and its chemical composition and surface state were also likely to be close to that of $VO_2$. In addition, the phase transition temperature of $W-VO_2$ was $38.5^{\circ}C$, which was approximately $29.2^{\circ}C$ lower than that of pure $VO_2$ ($67.7^{\circ}C$), indicating that the prepared sample had a good reversible thermochromic stability.


thermochoromic;vanadium dioxide;tungsten;phase transition


  1. A. Pan, J.-G. Zhang, Z. Nie, G. Cao, B.-W. Arey, G. Li, S.-Q. Liang, and J. Liu, J. Mater. Chem., 20, 9193 (2010).
  2. G. Silversmit, D. Depla, H. Poelman, G. B. Marin, and R. DeGryse, J. Electron Spectrosc. Rel. Phenom., 135, 167 (2004).
  3. S. P. Nachr and. G. W. Goettingen, Math.-Phys. Kl., 2, 98 (1918).
  4. J. Z. Yan, Y. Zhang, W. X. Huang, and M. G. Tu, Thin Solid Films, 516, 8554 (2008).
  5. J. Ye, L. Zhou, F. Liu, J. Qi, W. Gong, Y. Lin, and G. Ning, J. Alloy. Compd., 504, 503 (2010).
  6. C. Tang, P. Georgopoulos, M. E. Fine, and J. B. Cohen, Phys. Rev. B, 31, 1000 (1985).
  7. M. Pan, H. M. Zhong, S. W. Wang, J. Liu, Z. F. Li, X. S. Chen, and W. Lu, J. Cryst. Growth, 265, 121 (2004).
  8. A. R. Begishev, G. B. Galiev, A. S. Ignat'ev, V. G. Mokerov, and V. G. Poshin, Sov. Phys. Solid State, 20, 951 (1978).
  9. C. H. Griffiths and H. K. Eastwood, J. Appl. Phys., 45, 2201 (1974).
  10. Y. Sun, S. Jiang, W. Bi, R. Long, X. Tan, C. Wu, S. Wei, and Y. Xie, Nanoscale, 3, 4394 (2011).
  11. F. J. Morin, Phys. Rev. Lett., 3, 34 (1959).
  12. C. H. Griffiths and H. K. Eastwood, J. Appl. Phys., 45, 2201 (1974).
  13. Y. Muraoka, Y. Ueda, and Z. Hiroi, J. Phys. Chem. Solids, 63, 965 (2002).
  14. J. B. Goodenough. J. Solid State Chem., 3, 490 (1971).
  15. A. Zylbersztejn and N. F. Mott, Phys. Rev. B, 11, 4383 (1975).
  16. T. Marutama and Y. Ikuta, J. Mater. Sci., 28, 5073 (1993).
  17. G. Micocci, A. Serra, A. Tepore, S. Capone, R. Rella, and P. Siciliano, J. Vac. Sci. Technol. A., 15, 34 (1997).
  18. N. R. Mlyuka G. A. Niklasson, and C. G. Granqvist, Sol. Energ. Mat. Sol. C., 93, 1685 (2009).
  19. P. Jin, G. Xu, M. Tazawa, and K. Yoshimura, Appl. Phys. A-Mater., 77, 455 (2003).
  20. C. Batista, R. M Ribeiro, and V. Teixeira, Nanoscale. Res. Lett., 6, 301 (2011).
  21. S. Ji, F. Zhang, and P. Jin, Sol. Energ. Mat. Sol. C., 95, 3520 (2011).
  22. W. Burkhardt, T. Christmann, B. K., Meyer, W. Niessner, D. Schalch, and A. Scharmann, Thin Solid Films, 345, 229 (1999).
  23. T. J. Hanlon, J. A. Coath, and M. A. Richardson, Thin Solid Films, 436, 269 (2003).
  24. K. Rogers, Powder Diffr., 8, 240 (1993).
  25. J. Shi, S. Zhou, B. You, and L. Wu, Sol. Energ. Mat. Sol. C., 91, 1856 (2007).