Texturing Multi-crystalline Silicon for Solar Cell

태양전지용 다결정실리콘 웨이퍼의 표면 처리용 텍스쳐링제

  • Ihm, DaeWoo (Department of Chemical Engineering, Hoseo University) ;
  • Lee, Chang Joon (Department of Chemical Engineering, Hoseo University) ;
  • Suh, SangHyuk (Graduate School of Global Entrepreneurship, Hoseo University)
  • 임대우 (호서대학교 화학공학과) ;
  • 이창준 (호서대학교 화학공학과) ;
  • 서상혁 (호서대학교 글로벌창업대학원)
  • Published : 2013.02.10


Lowering surface reflectance of Si wafers by texturization is one of the most important processes for improving the efficiency of Si solar cells. This paper presents the results on the effect of texturing using acidic solution mixtures containing the catalytic agents to moderate etching rates on the surface morphology of mc-Si wafer as well as on the performance parameters of solar cell. It was found that the treatment of contaminated crystalline silicon wafer with $HNO_3-H_2O_2-H_2O$ solution before the texturing helps the removal of organic contaminants due to its oxidizing properties and thereby allows the formation of nucleation centers for texturing. This treatment combined with the use of a catalytic agent such as phosphoric acid improved the effects of the texturing effects. This reduced the reflectance of the surface, thereby increased the short circuit current and the conversion efficiency of the solar cell. Employing this technique, we were able to fabricate mc-Si solar cell of 16.4% conversion efficiency with anti-reflective (AR) coating of silicon nitride film using plasma-enhanced chemical vapor deposition (PECVD) and Si wafers can be texturized in a short time.


texturing;multi-crystalline silicon;acid;catalytic agent;solar cell


  1. D. Iencinella, E. Centurioni, R. Rizzoli, and F. Zignani, Sol. Energy Mater. Sol. Cells, 87, 725 (2005). https://doi.org/10.1016/j.solmat.2004.09.020
  2. G. T. Loacs, N. L. Maluf, and K. E. Petersen, Proc. IEEE, 86 (1998).
  3. A. M. Jeffery, Solar cells: An Introduction to Crystalline Photovoltaic Technology, 137, Kluwer Academic Publishers, Dordrecht (1997).
  4. S. W. Park and J. Kim, J. Korean Phys. Soc., 43, 426 (2003).
  5. Y. Inomata, K. Fukui, and K. Shirasawa, Sol. Energy Mater. Sol. Cells, 48, 237 (1997). https://doi.org/10.1016/S0927-0248(97)00106-2
  6. D. H. Macdonald, A. Cuevas, M. J. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, and A. Leo, Sol. Energy, 76, 277 (2004). https://doi.org/10.1016/j.solener.2003.08.019
  7. U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi, Sol. Energy Mater. Sol. Cells, 91, 285 (2007). https://doi.org/10.1016/j.solmat.2006.08.011
  8. Y. Nishimotoz, T. Ishihara, and K. Namba, J. Electroch. Soc., 146, 457 (1999). https://doi.org/10.1149/1.1391628
  9. K. Kim, S. K. Dhungel, S. Jung, D. Mangalaraj, and J. Yi, Solar Energy Mater. Sol. Cells, 92, 960 (2008). https://doi.org/10.1016/j.solmat.2008.02.036
  10. H. Y. Park, J. S. Lee, S. W. Kwon, S. W. Yoon, H. J. Lim, and D. H. Kim, J. Kor. Inst, Met. Mater., 46, 835 (2008).
  11. S. W. Chon, J. M. Lim, S. H. Choi, Y. M. Hong, and K. M. Cho, J. Kor. Inst. Surt. Eng., 40, 138 (2007). https://doi.org/10.5695/JKISE.2007.40.3.138
  12. J. Y. Kwon, H. E. Song, K. J. Yoon, J. S. Yoo, S. J. Choi, K. M. Han, and N. S. Kim, Proceedings of Fall Meeting, Kor. Solar Energy Soc., 30, 353 (2011).