Studies of Adsorption on the Anionic Surface of $SiO_2$ by Cationic Modified Starches

전분의 양성화 개질을 통한 음이온성 $SiO_2$ 표면에서의 흡착 특성 연구

  • Han, DongSung (Aekyung Central Research Laboratories) ;
  • Kim, YuMi (Aekyung Central Research Laboratories) ;
  • Kim, HanYoung (Aekyung Central Research Laboratories) ;
  • Chi, GyeongYup (Aekyung Central Research Laboratories) ;
  • Cho, InShik (Aekyung Central Research Laboratories) ;
  • Kim, JongDuk (Department of Chemical Engineering, Korea Advanced Institute of Science and Technology)
  • 한동성 (애경산업 중앙연구소) ;
  • 김유미 (애경산업 중앙연구소) ;
  • 김한영 (애경산업 중앙연구소) ;
  • 지경엽 (애경산업 중앙연구소) ;
  • 조인식 (애경산업 중앙연구소) ;
  • 김종득 (한국과학기술원 생명화학공학과)
  • Published : 2013.02.10

Abstract

The adsorption characteristics of cationic starches and starch-oligomers were investigated using the quartz crystal microbalance with dissipation monitoring (QCM-D). The adsorbed amount of modified starches was higher than that of cationic surfactants such as $C_{12{\sim}16}$ trimethylammonium bromide. Cationic starches did not show the tendency depending on the degree of cationic substitution and molecular weight. On the other hand, the softness of the adsorption layer increased with the molecular weight of cationic starches in a viscoelasticity terms. During the adsorption/desorption steps, the amount of adsorbed cationic surfactants was 4~9 times. On the other hand, the difference in the amount of adsorption of all the $C_1$ grafted cationic starches was just 0~50%. In addition, the rigidity of the adsorption layer of cationic surfactant in the desorption step decreased, while, that of cationic starches increased at the same condition.

Keywords

cationic starch;adsorption/desorption;quartz crystal microbalance (QCM);dissipation factor

References

  1. K. S. Kontturi, T. Tammelin, L. S. Johansson, and P. Stenius, Langmuir, 24, 4743 (2008). https://doi.org/10.1021/la703604j
  2. J. C. Lim and D. S. Han, Colloid Surf., A, 389, 116 (2011).
  3. L. Lundstrom-Hamala, E. Johansson, and L. Wagberg, Starch/Starke, 62, 102 (2010). https://doi.org/10.1002/star.200900176
  4. A. Kraak, Ind. Crops Prod., 1, 107 (1993).
  5. X. Tang and S. Alavi, Carbohydr. Polym., 85, 7 (2011). https://doi.org/10.1016/j.carbpol.2011.01.030
  6. D. R. Lu, C. M. Xiao, and S. J. Xu, eXPRESS Polym. Lett., 6, 366 (2009).
  7. Y. Wei, F. Cheng, and H. Zheng, Carbohydr. Polym., 74, 673 (2008). https://doi.org/10.1016/j.carbpol.2008.04.026
  8. M. Nichifor, M. C. Stanciu, and B. C. Simionescu, Carbohydr. Polym., 82, 965 (2010). https://doi.org/10.1016/j.carbpol.2010.06.027
  9. R. Kavaliauskaite, R. Klimaviciute, and A. Zemaitaitis, Carbohydr. Polym., 73, 665 (2008). https://doi.org/10.1016/j.carbpol.2008.01.019
  10. J. Bendoraitiene, R. Kavaliauskaite, R. Klimaviciute, and A. Zemaitaitis, Starch/Starke, 58, 623 (2006). https://doi.org/10.1002/star.200600541
  11. A. Larsson and S. Wall, Colloid Surf. A, 139, 259 (1998). https://doi.org/10.1016/S0927-7757(98)00326-4
  12. S. Pal, D. Mal, and R. P. Singh, Carbohydr. Polym., 59, 417 (2005). https://doi.org/10.1016/j.carbpol.2004.06.047
  13. J. S. Kim, J. S. Park, and J. C. Lim, J. Korean Ind. Eng. Chem., 20, 9 (2009).
  14. T. Tammelin, J. Merta, L. S. Johansson, and P. Stenius, Langmuir, 20, 10900 (2004). https://doi.org/10.1021/la0487693