Modification of PLA/PBAT Blends and Thermal/Mechanical Properties

PLA/PBAT 블렌드의 개질과 열적, 기계적 특성

  • Kim, Dae-Jin (Leaders in Industry-University Cooperation Foundation, Kyungpook National University) ;
  • Min, Chul-Hee (Department of Polymer Science & Engineering, Kyungpook National University) ;
  • Park, Hae-Youn (Department of Polymer Science & Engineering, Kyungpook National University) ;
  • Kim, Sang-Gu (R&D Center, Woosung Chemical Ltd.) ;
  • Seo, Kwan-Ho (Department of Polymer Science & Engineering, Kyungpook National University)
  • 김대진 (경북대학교 산학협력선도대학사업단) ;
  • 민철희 (경북대학교 고분자공학과) ;
  • 박해윤 (경북대학교 고분자공학과) ;
  • 김상구 ((주)우성케미칼 연구소) ;
  • 서관호 (경북대학교 고분자공학과)
  • Published : 2013.02.10

Abstract

Poymer blends of two degradable aliphatic polyesters, relatively expensive material polylactic acid (PLA) and relatively inexpensive material poly(butylene adipate-co-terephthalate) (PBAT), were used in this study. Three different kinds of modifiers were used with various amounts. Diisocyanate type methylenediphenyl 4,4'-diisocyanate (MDI) and hexamethylene diisocyanate (HDI) were used as modifiers and epoxy type coupling agents also used. The melt flow index (MFI) and dynamic viscoelasticity of various compositions of PLA/PBAT blends were studied. The mechanical property and morphology with respect to the fracture surface of PLA/PBAT blends were also investigated using tensile test and field emission scanning electronic microscopy, respectively. These tests were also used to verify the compatibility of PLA/PBAT and the effect of mechanical properties due to the use of modifiers. Tensile properties of PLA/PBAT blends modified with HDI were improved remarkably.

Keywords

PLA;PBAT;polymer blend;modifier;biodegradable polymer

References

  1. E. Takiyama and T. Fujimaki, Biodegradable Plastics And Polymers: Proceedings of The Third International Scientific Workshop on Biodegradable Plastics And Polymers, 12, 150 (1994).
  2. M. Ajioka, K. Enomoto, K. Suzuki, and A. Yamaguchi, Bull. Chem. Soc. Jpn., 68, 2125 (1995). https://doi.org/10.1246/bcsj.68.2125
  3. Y. Iwaya, K. Mukai, M. Kawanishi, and M. Nishinobara, US Patent 5,504,148 (1996).
  4. M. Mochizuki, K. Mukai, K. Yamada, N. Ichise, S. Murase, and Y. Iwaya, Macromolecules, 30, 7403 (1997). https://doi.org/10.1021/ma970036k
  5. T. Fujimaki and E. Takiyama, Polymer Preprints, Japan, 43, 3993 (1994).
  6. K. Weisskopf, J. Appl. Polym. Sci., 39, 2141 (1990). https://doi.org/10.1002/app.1990.070391009
  7. L. A. Utracki, Polymer Alloys and Blend, 340, Hanser Publishers, New York (1989).
  8. D. R. Paul and S. Newman. Polymer Blends, 28, Academic Press, New York (1978).
  9. L. A. Utracki, Polym. Eng. Sci., 34, 1720 (1994). https://doi.org/10.1002/pen.760342303
  10. J. Dorgan, J. Lehermeier, L. Palade, and J. Cicero, Macromol. Symp., 175, 55 (2001).
  11. S. Jscobsen, P. H. Degee, H. G. Fritz, P. H. Dubois, and R. Jerome, Polym. Eng. Sci., 39, 1311 (1999). https://doi.org/10.1002/pen.11518
  12. D. W. Grijpma, R. Van Hofslot, H. Super, A. Nijenhuis, and J. Pennings, Polym. Eng. Sci., 34, 1674 (1994). https://doi.org/10.1002/pen.760342205
  13. W. H. Carothers, G. L. Dorough, and F. J. Van natta, J. Am. Chem. Soc., 54, 761 (1932). https://doi.org/10.1021/ja01341a046
  14. http://www2.dupont.com/medical_packaging.
  15. R. G. Sinclair, ANTEC., 87, 1214 (1987).
  16. H. R. Kricheldorf and I. Kreiser-Saunders, Macromol. Symp., 103, 85 (1996).
  17. H. Tsuji and Y. Ikada, Macromol. Chem. Phys., 197, 3483 (1996). https://doi.org/10.1002/macp.1996.021971033
  18. J. E. Bergsma, R. Bos, F. R. Rozema, W. D. Jong, and G. Boering, J. Mater. Sci. Mater. Med., 7, 1 (1996). https://doi.org/10.1007/BF00121181
  19. K. J. Zhu, X. Z. Lin, and S. L. Yang, J. Appl. Polym. Sci., 39, 1 (1990). https://doi.org/10.1002/app.1990.070390101
  20. S. Y. Lee, I. J. Chin, and J. S. Jung, Eur. Polym. J., 35, 2147 (1999). https://doi.org/10.1016/S0014-3057(99)00024-5
  21. K. Bechtold, M. Hillmyer, and W. Tolman, Macromolecules, 34, 8641 (2001). https://doi.org/10.1021/ma0114887
  22. J. C. Meredith and E. J. Amis, Macromol. Chem. Phys., 201, 733 (2000). https://doi.org/10.1002/(SICI)1521-3935(20000301)201:6<733::AID-MACP733>3.0.CO;2-5
  23. X. Liu, M. Dever, N. Fair, and R. Benson, J. Environ. Polym. Degrad., 5, 225 (1997).
  24. S. Jacobsen and H. G. Fritz, Polym. Eng. Sci., 39, 1303 (1999). https://doi.org/10.1002/pen.11517
  25. O. Martin and L. Averous, Polymer, 42, 6209 (2001). https://doi.org/10.1016/S0032-3861(01)00086-6
  26. N. Ljungberg and B. Wesslen, J. Appl. Polym. Sci., 86, 1227 (2002). https://doi.org/10.1002/app.11077
  27. W. H. Carothers, Chemical Reviews, 8, 353 (1931). https://doi.org/10.1021/cr60031a001
  28. W. H. Carothers and J. W. Hill, J. Am. Chem. Soc., 54, 1579 (1932). https://doi.org/10.1021/ja01343a051
  29. T. Fujimaki, Polym. Degrad. Stabil., 59, 209 (1998). https://doi.org/10.1016/S0141-3910(97)00220-6
  30. E. Takiyama, I. Niikura, and Y. Hatano, US Patent 5,305,787 (1994).
  31. E. Takiyama, T. Fujimaki, S. Seki, T. Hokari, and Y. Hatano, US Patent 5,310,782 (1994).
  32. E. Takiyama, Y. Hatano, T. Fujimaki, S. Seki, T. Hokari, T. Hosogane, and N. Harigai, US Patent 5,436,056 (1995).
  33. E. Takiyama and T. Fujimaki, Biodegradable Plastics And Polymers: Proceedings of The Third International Scientific Workshop on Biodegradable Plastics And Polymers, 12, 584 (1994).
  34. E. Takiyama, N. Harigai, and T. Hokari, Japanese Patent H5-70,566, H5-70,572 (1993).
  35. E. Takiyama, L. Niikura, and Y. Hatano, US Patent 5,306,787 (1993).