DOI QR코드

DOI QR Code

Efficient Synthesis of Spirobarbiturates and Spirothiobarbiturates Bearing Cyclopropane Rings by Rhodium(II)-Catalyzed Reactions of Cyclic Diazo Compounds

  • Wang, Xue ;
  • Lee, Yong Rok
  • Received : 2013.02.01
  • Accepted : 2013.03.16
  • Published : 2013.06.20

Abstract

Rhodium(II)-catalyzed reactions of cyclic diazo compounds derived from barbituric acid and thiobarbituric acid with a variety of styrene moieties were examined. These reactions provide rapid synthetic routes to the preparations of spirobarbiturates and spirothiobarbiturates bearing cyclopropane rings.

Keywords

Rhodium(II)-catalyzed reactions;Spirobarbiturates;Spirothiobarbiturates;Diazo compounds

References

  1. Naguib, F. N.; Levesque, D. L.; Wang, E.-C.; Panzica, R. P.; el Kouni, M. H. Biochem. Pharmacol. 1993, 46, 1273. https://doi.org/10.1016/0006-2952(93)90477-E
  2. Uhlmann, C.; Froscher, W. CNS Neurosci. Ther. 2009, 15, 24. https://doi.org/10.1111/j.1755-5949.2008.00073.x
  3. Lomlin, L.; Einsiedel, J.; Heinemann, F. W.; Meyer, K.; Gmeiner, P. J. Org. Chem. 2008, 73, 3608. https://doi.org/10.1021/jo702573z
  4. Galati, E. M.; Monforte, M. T.; Miceli, N.; Raneri, E. Famaco 2001, 56, 459.
  5. Renard, A.; Lhomme, J.; Kotera, M. J. Org. Chem. 2002, 67, 1307.
  6. Fraser, W.; Suckling, C. J.; Wood, H. C. S. J. Chem. Soc., Perkin Trans 1 1990, 3137.
  7. Singh, P.; Paul, K. J. Heterocyclic Chem. 2006, 43, 607. https://doi.org/10.1002/jhet.5570430313
  8. Ming, Y.; Wamhoff, H. Chem. Ber. 1987, 120, 1433. https://doi.org/10.1002/cber.19871200822
  9. Lee, Y. R.; Hwang, J. C. Eur. J. Org. Chem. 2005, 1568.
  10. Lee, Y. R.; Suk, J. Y. Tetrahedron 2002, 58, 2359. https://doi.org/10.1016/S0040-4020(02)00118-7
  11. Lee, Y. R.; Suk, J. Y. Tetrahedron Lett. 2000, 41, 4795. https://doi.org/10.1016/S0040-4039(00)00716-4
  12. Lee, Y. R.; Suk, J. Y.; Kim, B. S. Tetrahedron Lett. 1999, 40, 8219. https://doi.org/10.1016/S0040-4039(99)01714-1
  13. Lee, Y. R.; Suk, J. Y.; Kim, B. S. Tetrahedron Lett. 1999, 40, 6603. https://doi.org/10.1016/S0040-4039(99)01317-9
  14. Lee, Y. R.; Suk, J. Y. Chem. Commun. 1998, 2621.
  15. Lee, Y. R.; Kim, D. H. Tetrahedron Lett. 2001, 42, 6561. https://doi.org/10.1016/S0040-4039(01)01345-4
  16. Lee, Y. R.; Cho, B. S.; Kwon, H. J. Tetrahedron 2003, 59, 9333. https://doi.org/10.1016/j.tet.2003.09.087
  17. Lee, Y. R.; Choi, J. H. Bull. Korean Chem. Soc. 2006, 27, 503. https://doi.org/10.5012/bkcs.2006.27.4.503
  18. Taber, D. F.; Ruckle, R. E., Jr.; Hennessy, M. J. J. Org. Chem. 1986, 51, 4077. https://doi.org/10.1021/jo00371a034
  19. Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. https://doi.org/10.1021/cr0200217
  20. Pietruszka, J. Chem. Rev. 2003, 103, 1051. https://doi.org/10.1021/cr010027g
  21. Faust, R. Angew. Chem., Int. Ed. 2001, 40, 2251. https://doi.org/10.1002/1521-3773(20010618)40:12<2251::AID-ANIE2251>3.0.CO;2-R
  22. Salaun, J. Top. Curr. Chem. 2000, 207, 1. https://doi.org/10.1007/3-540-48255-5_1
  23. Reissig, H. U.; Zimmer, R. Chem. Rev. 2003, 103, 1151. https://doi.org/10.1021/cr010016n
  24. Yamaguchi, K.; Kazuta, Y.; Hirano, K.; Yamada, S.; Matsuda, A.; Shuto, S. Bioorg. Med. Chem. 2008, 16, 8875. https://doi.org/10.1016/j.bmc.2008.08.061
  25. Yoshida, S.; Rosen, T. C.; Sloan, M. J.; Meyer, O. G. J.; Ye, S.; Haufe, G.; Kirk, K. L. Bioorg. Med. Chem. 2004, 12, 2645. https://doi.org/10.1016/j.bmc.2004.03.010
  26. Salaun, J.; Baird, M. S. Curr. Med. Chem. 1995, 2, 511.
  27. Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107, 3117 https://doi.org/10.1021/cr050988l
  28. Cousins, G. S.; Hoberg, J. O. Chem. Soc. Rev. 2000, 29, 165. https://doi.org/10.1039/a906932a
  29. Wong, H. N. C.; Hon, M.-Y.; Tse, C.-W.; Yip, Y.-C.; Tanko, J.; Hudlicky, T. Chem. Rev. 1989, 89, 165. https://doi.org/10.1021/cr00091a005
  30. Piers, E. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 5, p 971.
  31. Nonhebel, D. C. Chem. Soc. Rev. 1993, 347.
  32. Reissig, H.-U. Top. Curr. Chem. 1988, 144, 73. https://doi.org/10.1007/BFb0111229
  33. Doyle, M. P.; McKervey, M. A.; Ye, T. Morden Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley; New York, 1988.
  34. Nishiyama, H. In Rhutenium in Organic Synthesis; Murahashi, S.-I., Ed.; Wiley-VCH: Weinheim, 2004; p 179.
  35. Davies, H. M. L.; Walji, A. M. In Morden Rhodium- Catalyzed Organic Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, 2005; p 341.
  36. Doyle, M. P. Angew. Chem. Int. Ed. 2009, 48, 850. https://doi.org/10.1002/anie.200804940
  37. Davies, H. M. L.; Antoulinakis, E. G. Org. React. 2001, 57, 1.
  38. Hu, W.; Timmons, D. J.; Doyle, M. P. Org. Lett. 2002, 4, 901. https://doi.org/10.1021/ol017276b
  39. Brackmann, F.; de Meijiere, A. Chem. Rev. 2007, 107, 4493. https://doi.org/10.1021/cr078376j
  40. Wessjohann, L. A.; Brandt, W.; Thiemann, T. Chem. Rev. 2003, 103, 1625. https://doi.org/10.1021/cr0100188
  41. Davies, H. M. L.; Beckwith, R. E. J. Chem. Rev. 2003, 103, 2861. https://doi.org/10.1021/cr0200217
  42. Elinson, M. N.; Vereshchagin, A. N.; Stepanov, N. O.; Zaimovskaya, T. A.; Merkulova, V. M.; Nikishin, G. I. Tetrahedron Lett. 2010, 51, 428. https://doi.org/10.1016/j.tetlet.2009.11.065
  43. Ray, R.; Krishna, S. H.; Sharma, J. D.; Limaye, S. N. Asian. J. Chem. 2007, 19, 2497.
  44. Brunton, L. L.; Lazo, J. S.; Lazo, P.; Keith, L. Goodman & Gilman's The Pharmacological Basis of Therapeutics, 11th ed.; McGraw-Hill, 2006.
  45. Maquoi, E.; Sounni, N. E.; Devy, L.; Oliver, F.; Frankenen, F.; Krell, H.-W.; Grams, F.; Foidart, J. M.; Noel, A. Clin. Cancer Res. 2004, 10, 4038. https://doi.org/10.1158/1078-0432.CCR-04-0125
  46. Grams, F.; Brandstetter, H.; D'Alo, S.; Gepperd, D.; Krell, H.-W.; Leinert, H.; Livi, V.; Menta, E.; Oliva, A.; Zimmermann, G. Biol. Chem. 2001, 382, 1277.

Cited by

  1. ChemInform Abstract: Efficient Synthesis of Spirobarbiturates and Spirothiobarbiturates Bearing Cyclopropane Rings by Rhodium(II)-Catalyzed Reactions of Cyclic Diazo Compounds. vol.44, pp.40, 2013, https://doi.org/10.1002/chin.201340179
  2. Organocatalytic [3+2] Cycloadditions of Barbiturate-Based Olefins with 3-Isothiocyanato Oxindoles: Highly Diastereoselective and Enantioselective Synthesis of Dispirobarbiturates vol.358, pp.16, 2016, https://doi.org/10.1002/adsc.201600270

Acknowledgement

Supported by : National Research Foundation of Korea