Synthesis of polystyrene-clay nanocomposites and investigation of their barrier property

폴리스티렌-클레이 나노 복합재료의 합성 및 차단 특성에 관한 연구

  • Dhungana, Biraj (Advanced Materials Science and Engineering, Kongju National University) ;
  • Son, Younggon (Advanced Materials Science and Engineering, Kongju National University)
  • Received : 2013.04.10
  • Accepted : 2013.05.09
  • Published : 2013.05.31


In prepaparation of the high performance polymer/clay nanocomposite, it is essential to modify the hydrophillic $Na^+$-MMT to hydrophobic alkyl ammonium-MMT via organic surfactant. The organic surfactant, VDAC (vinylbenzyldimethyl-dodecylammonium chloride) was synthesized from two primary chemicals and $VDA^+$-MMT was prepared from $Na^+$-MMT through a cation exchange reaction between $Na^+$ and $VDA^+$ (vinylbenzyldimethyl-$dodecylammonium^+$) cation. $VDA^+$-MMT was then dispersed in styrene and polystyrene/$VDA^+$-MMT nanocomposite was fabricated by in-situ polymerization reaction. The clay dispersion and barrier property of the nanocomposite were investigated. From the investigations, it was confirmed that dispersion of the $VDA^+$-MMT was enhanced compared with that of $Na^+$-MMT and as a consequency of better dispersion, barrier property of organic solvent was improved in a great extent.


Clay;nanocomposite;Polystyrene;In-situ polymerization


  1. P. Meneghetti, S. Qutubuddin, "Synthesis, thermal properties and applications of polymer-clay nanocomposites", Thermochimica Acta, Vol. 442, pp. 74-77, 2006. DOI:
  2. Y. Zhong, Z. Zhu, and S.-Q. Wang, "Synthesis and rheological properties of polystyrene/layered silicate nanocomposite", Polymer, Vol. 46, pp. 3006-3013, 2005. DOI:
  3. X Fu, S Qutubuddin, "Polymer-clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene", Polymer, Vol. 42, pp. 807-813, 2001. DOI:
  4. J. Russell, A. Fraser, "Infrared methods in clay mineralogy," in Spectroscopic and Chemical Determinative Methods, M. J. Wilson, editor, Chapman and Hall, London, pp. 11-67, 1994. DOI:
  5. J. Madejova, P. Komadel, "Baseline studies of the clay minerals society source clays: infrared methods," Clays and Clay Minerals, vol. 49, pp. 410-432, 2001. DOI:
  6. J. Madejova, M. Janek, P. Komadel, H. J. Herbert, H. C. Moog, "FTIR analyses of water in MX-80 bentonite compacted from high salinary salt solution systems," Applied Clay Science, Vol. 20, pp. 255-271, 2002. DOI:
  7. C. Zeng, L. J. Lee, "Poly(methyl methacrylate) and Polystyrene/Clay Nanocomposites Prepared by in-Situ Polymerization", Macromolecules, Vol. 34, pp. 4098-4103, 2001. DOI:
  8. M. Okamoto, S. Morita, H. Taguchi1, Y. H. Kim, T. Kotaka, H. Tateyama, "Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization", Polymer, Vol. 41, pp 3887-3890, 2001. DOI:
  9. B. M. Novak. "Hybrid Nanocomposite Materials-between inorganic glasses and organic polymers ", Adv. Mater., Vol. 5, pp. 422-433, 1993. DOI:
  10. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, O. Kamigaito, "Synthesis of nylon 6-clay hybrid", J Mater Res Vol 8, pp.1179 - 1184, 1993. DOI:
  11. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, A. Fujushima, T. Kurauchi, O. Kamigaito, "Mechanical properties of nylon 6-clay hybrid", J Mater Res, Vol 8, 1185-1189, 1993. DOI:
  12. T. J. Pinnavaia, "Intercalated Clay Catalysts", Science, Vol 220(4595), pp. 365-371, 1983. DOI:
  13. R. A. Vaia, E. P. Giannelis, "Polymer Melt Intercalation in Organically-Modified Layered Silicates: Model Predictions and Experiment," Macromolecules, Vol. 30(25), pp. 8000-8009, 1997. DOI:
  14. C. M. Koo, S. M. Kim, I. J. Chung, "Study on Morphology Evolution, Orientational Behavior, and Anisotropic Phase Formation of Highly Filled Polymer-Layered Silicate Nanocomposites," Macromolecules, Vol. 36(8), pp. 2748-2757, 2003. DOI: