DOI QR코드

DOI QR Code

Development of a Wideband EPR Spectrometer with Microstrip and Loop Antennas

  • Ponomaryov, A.N. ;
  • Choi, K.Y. ;
  • Suh, B.J. ;
  • Jang, Z.H.
  • Received : 2012.05.31
  • Accepted : 2012.08.24
  • Published : 2013.06.30

Abstract

We have developed a new non-conventional electron paramagnetic resonance (EPR) spectrometer, in which no resonant cavity was used. We previously demonstrated a wide frequency range operation of an EPR spectrometer using two loop antennas, one for a microwave transmission and the other for signal detection [1]. In contrast to Ref. [1], the utilization of a microstrip antenna as a transmitter enhanced a capability of wide-band operation. The replacement of conventional capacitors with varactor diodes makes resonance condition easily reproducible without any mechanical action during tuning and matching procedure since the capacitance of the diodes is controlled electronically. The operation of the new EPR spectrometer was tested by measuring a signal of 1,1-diphenil-2-picrylhydrazyl (DPPH) sample in the frequency range of 0.8-2.5 GHz.

Keywords

electron paramagnetic resonance;microstrip;varactor diode;microwave tuning and matching circuit

References

  1. Z. H. Jang, B. J. Suh, M. Corti, L. Cattaneo, D. Hajny, F. Borsa, and M. Luban, Rev. Sci. Instrum. 79, 046101 (2008). https://doi.org/10.1063/1.2901382
  2. A. Abragam and B. Bleany, Electron Paramagnetic Resonance of Transition Ions, Dover, New York (1986).
  3. Charles P. Poole Jr., Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques, Dover, New York (1997) p. 123-205.
  4. L. Bogani and W. Wernsdorfer, Nature Mater. 7, 179 (2008). https://doi.org/10.1038/nmat2133
  5. V. V. Kostyuchenko and A. I. Popov, J. Exp. Theor. Phys. 107, 595 (2008). https://doi.org/10.1134/S1063776108100063
  6. W. Wernsdorfer, M. Murugesu, and G. Christou, Phys. Rev. Lett. 96, 057208 (2006). https://doi.org/10.1103/PhysRevLett.96.057208
  7. W. Wernsdorfer, Nature Nanotechnology 4, 145 (2009). https://doi.org/10.1038/nnano.2009.21
  8. M. N. Leuenberger and D. Loss, Nature 410, 789 (2001). https://doi.org/10.1038/35071024
  9. F. Meier, J. Levy, and D. Loss, Phys. Rev. Lett. 90, 047901 (2003). https://doi.org/10.1103/PhysRevLett.90.047901
  10. A. N. Ponomaryov, Namseok Kim, Jaewon Hwang, Hiroyuki Nojiri, Johan van Tol, Andrew Ozarowski, Jena Park, Zeehoon Jang, Byoungjin Suh, Sungho Yoon, and Kwang-Yong Choi, Chem. Asian J. 8, 1152 (2013). https://doi.org/10.1002/asia.201300054
  11. K. Y. Choi, Y. Matsuda, H. Nojiri, U. Kortz, F. Hussain, A. Stowe, C. Ramsey, and N. Dalal, Phys. Rev. Lett. 96, 107202 (2006). https://doi.org/10.1103/PhysRevLett.96.107202
  12. S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, and P. Boni, Science 323, 915 (2009). https://doi.org/10.1126/science.1166767
  13. C. C. Tsai, J. Choi, S. Cho, S. J. Lee, B. K. Sarma, C. Thompson, O. Chernyashevskyy, I. Nevirkovets, and J. B. Ketterson, Rev. Sci. Instrum. 80, 023904 (2009). https://doi.org/10.1063/1.3070471
  14. V. P. Denysenkov and A. M. Grishin, Rev. Sci. Instrum. 74, 3400 (2003). https://doi.org/10.1063/1.1581395
  15. C. D. Delfs and R. Bramley, J. Chem. Phys. 107, 8840 (1997). https://doi.org/10.1063/1.475315
  16. John H. Scofield, Am. J. Phys. 62, 129 (1994). https://doi.org/10.1119/1.17629
  17. N. D. Yordanov and A. Christva, Appl. Magn, Reson. 6, 341 (1994). https://doi.org/10.1007/BF03162498

Acknowledgement

Supported by : NRF, KRF