DOI QR코드

DOI QR Code

Enhanced Production of Cellobiase by a Marine Bacterium, Cellulophaga lytica LBH-14, in Pilot-Scaled Bioreactor Using Rice Bran

파이롯트 규모에서 미강을 이용한 해양미생물 Cellulophaga lytica LBH-14 유래의 cellobiase 생산

  • Cao, Wa (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Kim, Hung-Woo (Department of Biotechnology, College of Natural Resources and Life Science, Dong-A University) ;
  • Li, Jianhong (College of plant Science & Technology, Huazhong Agricultural University) ;
  • Lee, Jin-Woo (BK21 Bio-Silver Program of Dong-A University)
  • 고와 (동아대학교 대학원 의생명과학과) ;
  • 김형우 (동아대학교 대학원 의생명과학과) ;
  • 이잔홍 (중국 화중농업대학교 식물과학기술대학) ;
  • 이진우 (동아대학교 BK21 생물자원 실버바이오사업 인력양성단)
  • Received : 2013.01.04
  • Accepted : 2013.04.16
  • Published : 2013.04.30

Abstract

The aim of this work was to establish the optimal conditions for the production of cellobiase by a marine bacterium, Cellulophaga lytica LBH-14, using response-surface methodology (RSM). The optimal conditions of rice bran, ammonium chloride, and the initial pH of the medium for cell growth were 100.0 g/l, 5.00 g/l, and 7.0, respectively, whereas those for the production of cellobiase were 91.1 g/l, 9.02 g/l, and 6.6, respectively. The optimal concentrations of $K_2HPO_4$, NaCl, $MgSO_4{\cdot}_{7H2}O$, and $(NH_4)_2SO_4$ for cell growth were 6.25, 0.62, 0.28, and 0.42 g/l, respectively, whereas those for the production of cellobiase were 4.46, 0.36, 0.27, and 0.73 g/l, respectively. The optimal temperatures for cell growth and for the production of cellobiase by C. lytica LBH-14 were 35 and $25^{\circ}C$, respectively. The maximal production of cellobiase in a 100 L bioreactor under optimized conditions in this study was 92.3 U/ml, which was 5.4 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen sources for the production of cellobiase by C. lytica LBH-14. The time for the production of cellobiase by the marine bacterium with submerged fermentations was reduced from 7 to 3 days, which resulted in enhanced productivity of cellobiase and a decrease in its production cost. This study found that the optimal conditions for the production of cellobiase were different from those of CMCase by C. lytica LBH-14.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Adbel-Fattah, A. F., Osman, M. Y. and Abdel-Naby, M. A. 1997. Production and immobilization of cellobiase from Aspergillus niger A20. Chem Eng J 68, 189-196. https://doi.org/10.1016/S1385-8947(97)00082-X
  2. Beguin, P. and Aubert, J. P. 1994. The biological degradation of cellulose. FEMS Microbiol Rev 13, 25-58. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  3. Blumer-Schuette, S. E., Kataeva, I., Westpheling, J., M. Adams, M. W. W. and Kelly, R. M. 2008. Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19, 210-217. https://doi.org/10.1016/j.copbio.2008.04.007
  4. Carfagna, S., Vona, W., Martino, V. D., Esposito, S. and Rigano, C. 2011. Nitrogen assimilation and cysteine biosynthesis in barley: evidence for root sulphur assimilation upon recovery from N deprivation. Environ Exp Botany 71, 18-24. https://doi.org/10.1016/j.envexpbot.2010.10.008
  5. Chen, M., Xia, L. and Xue, P. 2007. Enzymatic hydrolysis of corncob and ethanol production from cellulosic hydrolysate. Int Biodeterior Bioderad 59, 85-89. https://doi.org/10.1016/j.ibiod.2006.07.011
  6. Chen, M., Zhao, J. and Xia, L. 2008. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars. Carbohydr Polym 71, 411-415. https://doi.org/10.1016/j.carbpol.2007.06.011
  7. Emtiazi, G. and Nahvi, I. 2000. Multi-enzyme production by Cellomonas sp. grown on wheat straw. Biomass Bioenergy 19, 31-37. https://doi.org/10.1016/S0961-9534(00)00015-5
  8. Emtiazi, G. and Nahvi, I. 2004. Production of thermostable ${\alpha}$-amylase and cellulase from Cellulomonas sp. J Microbiol Biotechnol 14, 1196-1199.
  9. Ge, L., Wang, P. and Mou, H. 2011. Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renew Energy 36, 84-89. https://doi.org/10.1016/j.renene.2010.06.001
  10. Gao, W., Lee, E. J., Lee, S. U., Li, J. and Lee, J. W. 2012. Enhanced carboxymethylcellulase production by a newly isolated marine bacterium, Cellulophaga lytica LBH-14, using rice bran. J Microbiol Biotechnol 22, 1415-1425. https://doi.org/10.4014/jmb.1203.03009
  11. de Groot, M. J., van Vondervoort, P. J., de Vries, R. P., Vankuyk, P. A., Ruijter, G. J. and Visser, J. 2003 Isolation and characterization of two specific regulatory Aspergillus niger mutants show antagonistic regulation of arabinan and xylan metabolism. Microbiol 149, 1183-1191. https://doi.org/10.1099/mic.0.25993-0
  12. Jaleel, C. A., Manivannan, P, Lakshmanan, G. M. A., Sridharan, R. and Panneerselvam, R. 2007. NaCl as a physiological modulator of proline metabolism and antioxidant potential in Phyllanthus amarus. Compt Rend Biol 330, 806-813. https://doi.org/10.1016/j.crvi.2007.08.009
  13. Jin, I. H., Jung, D. Y., Son, C. W., Kim, S. K., Gao, W., Chung, C. H. and Lee, J. W. 2011. Enhanced production of heteropolysaccharide-7 by Beijerinkia indica HS-2001 in repeated batch culture with optimized substitution of culture medium. Biotechnol Bioprocess Eng 16, 245-255. https://doi.org/10.1007/s12257-010-0120-1
  14. Jo, K. I., Lee, Y. J., Kim, B. K., Lee, B. H, Chung, C. H., Nam, S. W., Kim, S. K. and Lee, J. W. 2008. Pilot-scale production of carboxymethylcellulase from rice hull by Bacillus amyloliquefaciens DL-3. Biotechnol Bioprocess Eng 13, 182-188. https://doi.org/10.1007/s12257-007-0149-y
  15. Kim, B. K., Lee, B. H., Lee, Y. J., Jin, I. H., Chung, C. H. and Lee, J. W. 2009. Purification and characterization of carboxymethylcellulase isolated from a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb Technol 44, 411-416. https://doi.org/10.1016/j.enzmictec.2009.02.005
  16. Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2011. Statistical optimization for production of carboxymethylcellulase from rice hulls by a newly isolated marine microorganism Bacillus licheniformis LBH-52 using response surface method. J Life Sci 21, 1083-1093. https://doi.org/10.5352/JLS.2011.21.8.1083
  17. Kim, H. J., Lee, Y. J., Gao, W., Chung, C. H. and Lee, J. W. 2011. Statistical optimization for production of cellulases by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 from rice bran using an orthogonal array method. Biotechnol Bioprocess Eng 16, 542-548. https://doi.org/10.1007/s12257-010-0457-5
  18. Kim, H. J., Lee, Y. J., Gao, W., Chung, C. H. and Lee, J. W. 2012. Optimization of salts in medium for production of carboxymethylcellulase by a psychrophilic marine bacterium, Psychrobacter aquimaris LBH-10 using two statistical method. Korean J Chem Eng 29, 384-391. https://doi.org/10.1007/s11814-011-0192-4
  19. Kim, Y. J., Gao, W., Lee, S. U. and Lee, J. W. 2012. Enhanced production of carboxymethylcellulase by a newly isolated marine microorganism Bacillus atrophaeus LBH-18 using rice bran, a byproduct from the rice processing industry. J Life Sci 22, 1295-1306. https://doi.org/10.5352/JLS.2012.22.10.1295
  20. Kulakova, L., Galkin, A, Nakayama, T, Nishino, T. and Esaki, N. 2004. Cold-active estrase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly${\rightarrow}$Pro substitution near the active site on its catalytic activity and stability. Biochem Biophy Acta 1696, 59-65. https://doi.org/10.1016/j.bbapap.2003.09.008
  21. Latifian, M., Hamidi-Esfahani, Z. and Barzegar, M. 2007. Evaluation of culture conditions for cellulase production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour Technol 98, 3634-3637. https://doi.org/10.1016/j.biortech.2006.11.019
  22. Lee, B. H., Kim, B. K., Lee, Y. J, Chung, C. H. and Lee, J. W. 2010. Industrial scale of optimization for the production of carboxymethylcellulase from rice bran by a marine bacterium, Bacillus subtilis subsp. subtilis A-53. Enzyme Microb Technol 46, 38-42. https://doi.org/10.1016/j.enzmictec.2009.07.009
  23. Lee, Y. J., Kim, B. K., Lee, B. H., Jo, K. I, Lee, N. K., Chung, C. H., Lee, Y. C. and Lee, J. W. 2008. Purification and characterization of cellulase produced by Bacillus amyloliquefaciens DL-3 utilizing rice hull. Bioresour Technol 99, 378-386. https://doi.org/10.1016/j.biortech.2006.12.013
  24. Lee, Y. J., Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2011. Comparison of statistical methods for optimization of salts in the medium for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant E. coli JM109/DL-3. J Life Sci 21, 1205-1213. https://doi.org/10.5352/JLS.2011.21.9.1205
  25. Lee, Y. J., Kim, H. J., Gao, W., Chung, C. H. and Lee, J. W. 2012. Statistical optimization for production of carboxymethylcellulase of Bacillus amyloliquefaciens DL-3 by a recombinant Escherichia coli JM109/DL-3 from rice bran using response surface method. Biotechnol Bioprocess Eng 17, 227-235. https://doi.org/10.1007/s12257-011-0258-5
  26. Liming, X. and Xueling, S. 2004. High-yield cellulose production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour Technol 91, 259-262. https://doi.org/10.1016/S0960-8524(03)00195-0
  27. Rajoka, M. I., Akhtar, M. W., Hanif, A. and Khalid, A. M. 2006. Production and characterization of a highly active cellobiase from Aspergillus niger grown in solid state fermentation. World J Microbiol Biotechnol 22, 991-998. https://doi.org/10.1007/s11274-006-9146-0
  28. Rasmussnen, R. S. and Morrissey, M. T. 2007. Marine biotechnology for production of food ingredients. Adv Food Nutr Res 52, 237-292. https://doi.org/10.1016/S1043-4526(06)52005-4
  29. Ryu, D. D. Y. and Mandels, M. 1980. Cellulase: biosynthesis and applications. Enzyme Microb Technol 2, 91-102. https://doi.org/10.1016/0141-0229(80)90063-0
  30. Saratale, G. F., Saratale, R. G. and Oh, S. E. 2012. Production and characterization of multiple cellulolytic enzymes by isolated Streptomyces sp. MDS. Biomass Bioenergy 47, 302-315. https://doi.org/10.1016/j.biombioe.2012.09.030
  31. Senthikumar, S. R., Ashokkumar, A., Raj, K. C. and Cunasekraran, P. 2005. Optimization of medium composition for alkali-stable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Bioresour Technol 96, 1380-1386. https://doi.org/10.1016/j.biortech.2004.11.005
  32. Shen, X. and Xia, L. 2004. High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour Technol 91, 259-262. https://doi.org/10.1016/S0960-8524(03)00195-0
  33. Sukumaran, R. K., Singhania, R. R., Mathew, G. M. and Pandey, A. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34, 421-424. https://doi.org/10.1016/j.renene.2008.05.008

Cited by

  1. Comparison of optimal conditions for mass production of carboxymethylcellulase by Escherichia coli JM109/A-68 with other recombinants in pilot-scale bioreactor vol.22, pp.2, 2017, https://doi.org/10.1007/s12257-017-0035-1
  2. Overexpression and characterization of a novel α-neoagarobiose hydrolase and its application in the production of D-galactonate from Gelidium amansii 2017, https://doi.org/10.1016/j.procbio.2017.08.014
  3. Enhanced production of cellobiase by marine bacterium Cellulophaga lytica LBH-14 from rice bran under optimized conditions involved in dissolved oxygen vol.20, pp.1, 2015, https://doi.org/10.1007/s12257-014-0486-6
  4. Enhanced Production of carboxymethylcellulase by a marine bacterium, Bacillus velezensis A-68, by using rice hulls in pilot-scale bioreactor under optimized conditions for dissolved oxygen vol.52, pp.9, 2014, https://doi.org/10.1007/s12275-014-4156-3