DOI QR코드

DOI QR Code

Saccharomyces cerevisiae Live Cells Decreased In vitro Methane Production in Intestinal Content of Pigs

  • Gong, Y.L. ;
  • Liao, X.D. ;
  • Liang, J.B. ;
  • Jahromi, M.F. ;
  • Wang, H. ;
  • Cao, Z. ;
  • Wu, Y.B.
  • Received : 2012.11.28
  • Accepted : 2013.02.13
  • Published : 2013.06.01

Abstract

An in vitro gas production technique was used in this study to elucidate the effect of two strains of active live yeast on methane ($CH_4$) production in the large intestinal content of pigs to provide an insight to whether active live yeast could suppress $CH_4$ production in the hindgut of pigs. Treatments used in this study include blank (no substrate and no live yeast cells), control (no live yeast cells) and yeast (YST) supplementation groups (supplemented with live yeast cells, YST1 or YST2). The yeast cultures contained $1.8{\times}10^{10}$ cells per g, which were added at the rates of 0.2 mg and 0.4 mg per ml of the fermented inoculum. Large intestinal contents were collected from 2 Duroc${\times}$Landrace${\times}$Yorkshire pigs, mixed with a phosphate buffer (1:2), and incubated anaerobically at $39^{\circ}C$ for 24 h using 500 mg substrate (dry matter (DM) basis). Total gas and $CH_4$ production decreased (p<0.05) with supplementation of yeast. The methane production reduction potential (MRP) was calculated by assuming net methane concentration for the control as 100%. The MRP of yeast 2 was more than 25%. Compared with the control group, in vitro DM digestibility (IVDMD) and total volatile fatty acids (VFA) concentration increased (p<0.05) in 0.4 mg/ml YST1 and 0.2 mg/ml YST2 supplementation groups. Proportion of propionate, butyrate and valerate increased (p<0.05), but that of acetate decreased (p<0.05), which led to a decreased (p<0.05) acetate: propionate (A: P) ratio in the both YST2 treatments and the 0.4 mg/ml YST 1 supplementation groups. Hydrogen recovery decreased (p<0.05) with yeast supplementation. Quantity of methanogenic archaea per milliliter of inoculum decreased (p<0.05) with yeast supplementation after 24 h of incubation. Our results suggest that live yeast cells suppressed in vitro $CH_4$ production when inoculated into the large intestinal contents of pigs and shifted the fermentation pattern to favor propionate production together with an increased population of acetogenic bacteria, both of which serve as a competitive pathway for the available H2 resulting in the reduction of methanogenic archaea.

Keywords

In vitro Gas Production;Methane;Methanogenic Archaea;Pig;Saccharomyces cerevisiae;Volatile Fatty Acid

References

  1. Ushida K, Y. Ohashi, M. Tokura, K. Miyazaki and Y. Kojima. 1995. Sulfate reduction and methanogenesis in the ovine rumen and porcine caecum: a comparison of two microbial ecosystems. Dtsch. Tierarztl. Wochenschr. 102:154-156.
  2. Van der Peet-Schwering, C. M., A. J. Jansman, H. Smidt and I. Yoon. 2007. Effects of yeast culture on performance, gut integrity, and blood cell composition of weaning pigs. J. Anim. Sci. 85:3099-3109. https://doi.org/10.2527/jas.2007-0110
  3. White T. J., T. Bruns, S. Lee and J. Taylor. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. A. Innis et al (Ed.). 1990. Academic Press, San Diego, USA, pp. 315-322.
  4. Zinder S. H. 1993. Physiological ecology of methanogens. In: Methanogenesis: Ecology, Physiology, Biochemistry and Genetics (Ed. J. G. Ferry). London: Chapman & Hall. 128-206.
  5. Knudsen, K.E. and H. Jorgensen. 2001. Intestinal degradation of dietary carbohydrates-from birth to maturity. In: Lindberg, J.E., Ogle, B. (Eds.), Digestive Physiology of Pigs. CABI Publishing, Wallingford, pp. 109-120.
  6. Lila, Z. A., N. Mohammed, T. Yasui, Y. Kurokawa, S. Kanda and H. Itabashi. 2004. Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro. J. Anim. Sci. 82:1847-1854.
  7. Lila, Z. A., N. Mohammed, T. Takahashi, M. Tabata, T. Yasui, M. Kurihara, S. Kanda and H. Itabashi. 2006. Increase of ruminal fiber digestion by cellobiose and a twin strain of Saccharomyces cerevisiae live cells in vitro. J. Anim. Sci. 77:407-413. https://doi.org/10.1111/j.1740-0929.2006.00366.x
  8. Ly, J., N. V. Lai, L. Rodriguez and T. R. Preston. 1997. In vitro gas production and washing losses of tropical crop residues for ruminants and pigs. Livest. Res. Rural Dev. 9:26-37
  9. Lynch, H. A. and S. A. Martin. 2002. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation. J. Dairy Sci. 85:2603-2608. https://doi.org/10.3168/jds.S0022-0302(02)74345-2
  10. Martin, S. A., D. J. Nisbet and R. G. Dean. 1989. Influence of a commercial yeast supplement on the in vitro ruminal fermentation. Nutr. Rep. Int. 40:395-403.
  11. Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. J. Anim. Res. Dev. 28:7-55.
  12. Mutsvangwa, T., I. E. Edwards, J. H. Topps and G. F. M. Paterson. 1992. The effect of dietary inclusion of yeast culture (Yea-Sacc) on patterns of rumen fermentation, food intake and growth of intensively fed bulls. Anim. Prod. 55:35-40. https://doi.org/10.1017/S0003356100037247
  13. National Research Council. 1998. Nutrient Requirements of Swine, 10th. Washington DC: National Academy Press.
  14. Newbold, C. J. 1995. Microbial feed additives for ruminants. In: Biotechnology in Animal Feeds and Animal Feeding (Ed. R. J. Wallace and A. Chesson). VCH, Weinheim, Germany, pp. 259-278.
  15. Podzorski, R. P., G. R. Gray and R. D. Nelson. 1990. Different effects of native Candida albicans mannan and mannan-derived oligosaccharides on antigen-stimulated lymphoproliferation in vitro. J. Immunol. 144:707-716.
  16. Ritalahti, K. M., B. K.Amos, Y. Sung, Q. Wu, S. S. Koenigsberg and F. E. Loffler. 2006. Quantitative PCR targeting 16s rRNA and reductive dehalogenase genes simultaneously monitors multiple dehalococcoides strains. Appl. Environ. Microbiol. 72:2765-2774. https://doi.org/10.1128/AEM.72.4.2765-2774.2006
  17. Robinson, P. H. and L. J. Erasmus. 2009. Effects of analyzable diet components on responses of lactating dairy cows to Saccharomyces cerevisiae based yeast products: A systematic review of the literature. Anim. Feed Sci. Technol. 149:185-198. https://doi.org/10.1016/j.anifeedsci.2008.10.003
  18. Scheehle, E. A. and D. Kruger. 2006. Global anthropogenic methane and nitrous oxide emissions. Energy J. 3:33-34.
  19. Sullivan, H. M. and S. A. Martin. 1999. Effects of Saccharomyces cerevisiae culture on in vitro mixed ruminal microorganism fermentation. J. Dairy Sci. 82:2011-2016. https://doi.org/10.3168/jds.S0022-0302(99)75438-X
  20. Ayala, O. J., S. S. GonzaAlez, R. Herrera, R. Barcena and G. D. Mendoza. 1992. Effect of a probiotic and a molasses-urea supplement on fiber digestibility of sesame straw. J. Anim. Sci. 70:307.
  21. Bellier, R. and T. Gidenne. 1996. Consequences of reduced fibre intake on digestion, rate of passage and caecal microbial activity in the young rabbit. Br. J. Nutr. 75:353-363. https://doi.org/10.1079/BJN19960139
  22. Breznak, J. A. and J. M. Switzer 1986. Acetate synthesis from $H_{2}$ plus $CO_{2}$ by termite gut microbes. Appl. Environ. Microbiol. 52:623-630.
  23. Boadi, D., C. Benchaar, J. Chiquette and D. Masse. 2004. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 84:319-335. https://doi.org/10.4141/A03-109
  24. Chaucheyras, F., G. Fonty, G. Bertin and P. Gouet. 1995. In vitro $H_{2}$ utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 61:3466-3467.
  25. Chaucheyras-Durand, F., G. Fonty and G. Bertin. 1997. Effects of a microbial additive, Levucell SC on growth and metabolism of a ruminal acetogenic bacterial strain in vitro. In: Proceedings of Rumen Function Conference, Chicago, USA, p. 33.
  26. Chuang, Y. H., N. D. Walker, S. M. McGinn and K. A. Beauchemin. 2011. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows. J. Dairy Sci. 94:2431-2439. https://doi.org/10.3168/jds.2010-3277
  27. Czerkawski, W. J. 1986. An introduction to rumen studies. Oxford, UK: Pergamon Press.
  28. Davis, M. E., D. C. Brown, C. V. Maxwell, Z. B. Johnson, E. B. Kegley and R. A. Dvorak. 2004. Effect of phosphorylated mannans and pharmacological additions of zinc oxide on growth and immunocompetence of weaning pigs. J. Anim. Sci. 82:581-587.
  29. Dawson, K. A. 1990. Designing the yeast culture of tomorrow-mode of action of yeast culture for ruminants and non-ruminants. In: Biotechnology in the Feed Industry. Proc. Alltech's 6th Annu. Symp. Lexington, KY. Alltech Tech. Publ. Nicholasville, KY. p. 59.
  30. Demeyer, D. I. and K. De Graeve. 1991. Differences in stoichiometry between rumen and hindgut fermentation. J. Anim. Physiol. Anim. Nutr. 22:50-61.
  31. Desnoyers, M., S. Giger-Reverdin, G. Bertin, C. Duvaux-Ponter and D. Sauvant. 2009. Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. J. Dairy Sci. 92:1620-1632. https://doi.org/10.3168/jds.2008-1414
  32. Flint, H. J. 1997. The rumen microbial ecosystem- some recent developments. Trends Microbiol. 5:483-488. https://doi.org/10.1016/S0966-842X(97)01159-1

Cited by

  1. Evaluating biochemical methane production from brewer’s spent yeast vol.43, pp.9, 2016, https://doi.org/10.1007/s10295-016-1792-0
  2. fermentative capacity of swine large intestine: comparison between native Lantang and commercial Duroc breeds vol.88, pp.8, 2016, https://doi.org/10.1111/asj.12723
  3. Mode of action of Saccharomyces cerevisiae in enteric methane mitigation in pigs pp.1751-732X, 2017, https://doi.org/10.1017/S1751731117001732

Acknowledgement

Supported by : Ministry of Science and Technology of China