Effect of γ-Aminobutyric Acid (GABA) Producing Bacteria on In vitro Rumen Fermentation, Biogenic Amine Production and Anti-oxidation Using Corn Meal as Substrate

  • Ku, Bum Seung (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University) ;
  • Mamuad, Lovelia L. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University) ;
  • Kim, Seon-Ho (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University) ;
  • Jeong, Chang Dae (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University) ;
  • Soriano, Alvin P. (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University) ;
  • Lee, Ho-Il (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University) ;
  • Nam, Ki-Chang (Meat Science Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University) ;
  • Ha, Jong K. (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Sang Suk (Ruminant Nutrition and Anaerobe Laboratory, Department of Animal Science and Technology, College of Bio-industry Science, Sunchon National University)
  • Received : 2012.10.09
  • Accepted : 2013.01.02
  • Published : 2013.06.01


The effects and significance of ${\gamma}$-amino butyric acid (GABA) producing bacteria (GPB) on in vitro rumen fermentation and reduction of biogenic amines (histamine, methylamine, ethylamine, and tyramine) using corn meal as a substrate were determined. Ruminal samples collected from ruminally fistulated Holstein cows served as inoculum and corn was used as substrate at 2% dry matter (DM). Different inclusion rates of GPB and GABA were evaluated. After incubation, addition of GPB had no significant effect on in vitro fermentation pH and total gas production, but significantly increased the ammonia nitrogen ($NH_3$-N) concentration and reduced the total biogenic amines production (p<0.05). Furthermore, antioxidation activity was improved as indicated by the significantly higher concentration of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) among treated samples when compared to the control (p<0.05). Additionally, 0.2% GPB was established as the optimum inclusion level. Taken together, these results suggest the potential of utilizing GPB as feed additives to improve growth performance in ruminants by reducing biogenic amines and increasing anti-oxidation.


Grant : Development of production technologies for high quality and nutritional values of beef in Hanwoo

Supported by : Agriculture and Forestry Ministry of Agriculture, Forestry and Fisheries


  1. Thauer, R. K. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology 144:2377-2406.
  2. Ueno, Y., K. Hayakawa, S. Takahashi and K. Oda. 1997. Purification and characterization of glutamate decarboxylase from Lactobacillus brevis IFO 12005. Biosci. Biotechnol. Biochem. 61:1168-1171.
  3. Underwood, W. J. 1992. Rumen lactic acidosis. Part 2. Clinical signs, diagnosis, treatment and prevention. Compend. Cont. Educ. Pract. Vet. 14:1265-1270.
  4. Van Os, M., J. P. Dulphy and R. Baumont. 1995. The effect of protein degradation products in grass silages on feed intake and intake behaviour in sheep. Br. J. Nutr. 73:51-64.
  5. Wolfenson, D., Y. Frei, N. Snapir and A. Berman. 1981. Heat stress effects on capillary blood flow and its redistribution in the laying hen. Pflugers. Arch. 390:86-93.
  6. Zhang, M., X. T. Zou, H. Li, X. Y. Dong and W. Zhao. 2012. Effect of dietary gamma-aminobutyric acid on laying performance, egg quality, immune activity and endocrine hormone in heat-stressed Roman hens. Anim. Sci. J. 83:141-147.
  7. Murillo, M., E. Herrera, O. Reyes, J. N. Gurrola and E. Gutierrez. 2011. Use in vitro gas production technique for assessment of nutritional quality of diets by range steers. Afr. J. Agric. Res. 6:2522-2526.
  8. Omar, N. B., F. Ampe, M. Raimbault, J. P. Guyot and P. Tailliez. 2000. Molecular diversity of lactic acid bacteria from cassava sour starch (Colombia). Syst. Appl. Microbiol. 23:285-291.
  9. Paglia, D. E. and W. N. Valentine. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70:158-169.
  10. Russell, J. B., W. M. Sharp and R. L. Baldwin. 1979. The effect of pH on maximum bacterial growth rate and its possible role as a determinant of bacterial competition in the rumen. J. Anim. Sci. 48:251-255.
  11. Russell, J. B., C. J. Sniffen and P. J. Van Soest. 1983. Effect of carbohydrate limitation on degradation and utilization of casein by mixed rumen bacteria. J. Dairy Sci. 66:763-775.
  12. Russell, J. B. and P. J. Van Soest. 1984. In vitro ruminal fermentation of organic acids common in forage. Appl. Environ. Microbiol. 47:155-159.
  13. SAS. 2002. SAS/STAT. Statistical Analysis Systems for Windows. Release 9.1. SAS Institute Inc., Cary, NC, USA.
  14. Satokari, R. M., E. E. Vaughan, H. Smidt, M. Saarela, J. Matto and W. M. de Vos. 2003. Molecular approaches for the detection and identification of Bifidobacteria and Lactobacilli in the human gastrointestinal tract. Syst. Appl. Microbiol. 26:572-584.
  15. Shalaby, A. R. 1996. Significance of biogenic amines to food safety and human health. Food Res. Int. 29:675-690.
  16. Shelp, B. J., A. W. Bown and M. D. McLean. 1999. Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci. 4:446-452.
  17. Slyter, L. L., L. D. Satter and D. A. Dinius. 1979. Effect of ruminal ammonia concentration on nitrogen utilization by steers. J Anim. Sci. 48:906-912.
  18. Snyder, L. R., J. J. Kirkland and J. L. Glajch. 1997. Practical HPLC Method Development. John Wiley and Sons, New York, USA. pp. 180.
  19. St-Pierre, N. R., B. Cobanov and G. Schnitkey. 2003. Economic losses from heat stress by US livestock industries. J. Dairy Sci. 86:E52-E77.
  20. Storz, G., L. A. Tartaglia, S. B. Farr and B. N. Ames. 1990. Bacterial defenses against oxidative stress. Trends Genet. 6:363-368.
  21. Syrjala, L., V. Kossila and H. Sipila. 1973. A study of nutritional status of Finnish reindeer (Rangifer tarandus L.) in different months. I. Composition and volume of the microbiota. J. Sci. Agric. Soc. Finl. 45:534-541.
  22. Tabaru, H., E. Kadota, H. Yamada, N. Sasaki and A. Takeuchi. 1988. Determination of volatile fatty acids and lactic acid in bovine plasma and ruminal fluid by high performance liquid chromatography. Jpn. J. Vet. Sci. 50:1124-1126.
  23. Inoue, K., T. Shirai, H. Ochiai, M. Kasao, K. Hayakawa, M. Kimura and H. Sansawa. 2003. Blood-pressure-lowering effect of a novel fermented milk containing gamma-aminobutyric acid (GABA) in mild hypertensives. Eur. J. Clin. Nutr. 57:490-495.
  24. Jakobs, C., J. Jaeken and K. M. Gibson. 1993. Inherited disorders of GABA metabolism. J. Inherit. Metab. Dis. 16:704-715.
  25. Javorsky, P., E. Rybosova, Z. Mayerova, H. Mlynarcikova and J. Legath. 1993. Resistance of ruminal microorganisms to supermethrin. Vet. Hum. Toxicol. 35:15-18.
  26. Koelkebeck, K. W. and T. W. Odom. 1994. Laying hen responses to acute heat stress and carbon dioxide supplementation: I. Blood gas changes and plasma lactate accumulation. Comp. Biochem. Physiol. Comp. Physiol. 107:603-606.
  27. Komuro, Y., K. Ishihara, Y. Kojima, K. Saigenji and K. Hotta. 1998. Distinct effects of tetragastrin in rat gastroduodenal mucosa on mucin content and mucosal protective action against histamine-induced injury. Dig. Dis. Sci. 43:1050-1056.
  28. LeBlanc, J. G., S. del Carmen, A. Miyoshi, V. Azevedo, F. Sesma, P. Langella, L. G. Bermúdez-Humaran, L. Watterlot, G. Perdigon and A. de Moreno de LeBlanc. 2011. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn's disease in mice. J. Biotechnol. 151:287-293.
  29. Lenartova, V., K. Holovska and P. Javorsky. 1998. The influence of mercury on the antioxidant enzyme activity of rumen bacteria Streptococcus bovis and Selenomonas ruminantium. FEMS Microbiol. Ecol. 27:319-325.
  30. Li, H. and Y. Cao. 2010. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids 39:1107-1116.
  31. Li, H., T. Qiu, G. Huang and Y. Cao. 2010. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb. Cell Fact. 9:85.
  32. Liu, J. X., A. Susenbeth and K. H. Sudekum. 2002. In vitro gas production measurements to evaluate interactions between untreated and chemically treated rice straws, grass hay, and mulberry leaves. J. Anim. Sci. 80:517-524.
  33. Lopez-Torres, M., R. Perez-Campo and G. Barja de Quiroga. 1991. Aging in brown fat: antioxidant defenses and oxidative stress. Mech. Ageing Dev. 59:129-137.
  34. Marklund, S. and G. Marklund. 1974. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47:469-474.
  35. Matsumoto, D., M. Takagi, Y. Fushimi, K. Okamoto, M. Kido, M. Ryuno, Y. Imura, M. Matsunaga, K. Inokoshi, F. Shahada and E. Deguchi. 2009. Effects of gamma-aminobutyric acid administration on health and growth rate of group-housed Japanese black calves fed using an automatic controlled milk feeder. J. Vet. Med. Sci. 71:651-656.
  36. Miller, M. J., X. J. Zhang, B. Barkemeyer, H. Sadowska-Krowicka, S. Eloby-Childress, X. Gu and D. A. Clark. 1991. Potential role of histamine monochloramine in a rabbit model of ileitis. Scand. J. Gastroenterol. 26:852-858.
  37. Costantini, A., E. Vaudano, V. Del Prete, M. Danei and E. Garcia-Moruno. 2009. Biogenic amine production by contaminating bacteria found in starter preparations used in winemaking. J. Agric. Food Chem. 57:10664-10669.
  38. Dawson, L. E. R. and C. S. Mayne. 1997. The effect of infusion of putrescine and gamma amino butyric acid on the intake of steers offered grass silage containing three levels of lactic acid. Anim. Feed Sci. Technol. 66:15-29.
  39. de las Heras, M. A., A. Valcarcel and L. J. Perez. 1997. In vitro capacitating effect of gamma-aminobutyric acid in ram spermatozoa. Biol. Reprod. 56:964-968.
  40. Do, H. Q., T. Thi Thuy, T. Phuc Hao, T. R. Preston and R. A. Leng. 2011. Effects of nitrate and sulphur on in vitro methane production and dry matter degradation. Livest. Res. Rural Dev. 23.
  41. Dryhurst, N. and C. D. Wood. 1998. The effect of nitrogen source and concentration on in vitro gas production using rumen micro-organisms. Anim. Feed Sci. Technol. 71:131-143.
  42. Fusi, E., L. Rossi, R. Rebucci, F. Cheli, A. Di Giancamillo, C. Domeneghini, L. Pinotti, V. Dell'Orto and A. Baldi. 2004. Administration of biogenic amines to Saanen kids: effects on growth performance, meat quality and gut histology. Small Rumin. Res. 53:1-7.
  43. Gardner, N. J., T. Savard, P. Obermeier, G. Caldwell and C. P. Champagne. 2001. Selection and characterization of mixed starter cultures for lactic acid fermentation of carrot, cabbage, beet and onion vegetable mixtures. Int. J. Food Microbiol. 64:261-275.
  44. Groot Koerkamp, P. W. G., J. H. M. Metz, G. H. Uenk, V. R. Phillips, M. R. Holden, R. W. Sneath, J. L. Short, R. P. White, J. Hartung, J. Seedorf, M. Schröder, K. H. Linkertc, S. Pedersend, H. Takaid, J. O. Johnsend and C. M. Wathes. 1998. Concentrations and emissions of ammonia in livestock buildings in Northern Europe. J. Agric. Eng. Res. 70:79-95.
  45. Han, S.-K., S.-H. Kim and H.-S. Shin. 2005. UASB treatment of wastewater with VFA and alcohol generated during hydrogen fermentation of food waste. Process Biochem. 40:2897-2905.
  46. Hassanat, F. and C. Benchaar. 2012. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agric. 93:332-339.
  47. Hayakawa, K., M. Kimura, K. Kasaha, K. Matsumoto, H. Sansawa and Y. Yamori. 2004. Effect of a gamma-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. Br. J. Nutr. 92:411-417.
  48. Holovska, K., V. Lenartova, P. Pristas and P. Javorsky. 2002. Are ruminal bacteria protected against environmental stress by plant antioxidants? Lett. Appl. Microbiol. 35:301-304.
  49. Huang, J., L.-h. Mei, H. Wu and D.-q. Lin. 2007. Biosynthesis of $\gamma$-aminobutyric acid (GABA) using immobilized whole cells of Lactobacillus brevis. World J. Microbiol. Biotechnol. 23:865-871.
  50. Akinfemi, A., A. O. Adesanya and V. E. Aya. 2009. Use of an in vitro gas production technique to evaluate some Nigerian feedstuffs. Am. Eur. J. Sci. Res. 4:240-245.
  51. Aschenbach, J. R. and G. Gäbel. 2000. Effect and absorption of histamine in sheep rumen: Significance of acidotic epithelial damage. J. Anim. Sci. 78:464-470.
  52. Baydas, G., F. Ozveren, I. Akdemir, M. Tuzcu and A. Yasar. 2005. Learning and memory deficits in rats induced by chronic thinner exposure are reversed by melatonin. J. Pineal. Res. 39:50-56.
  53. Beuving, G. and G. M. Vonder. 1978. Effect of stressing factors on corticosterone levels in the plasma of laying hens. Gen. Comp. Endocrinol. 35:153-159.
  54. Cho, Y. R., J. Y. Chang and H. C. Chang. 2007. Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17:104-109.

Cited by

  1. Gamma-aminobutyric acid (GABA) permeates ovine ruminal and jejunal epithelia, mainly by passive diffusion vol.101, pp.1, 2016,
  2. An in vitro evaluation of the effects of a Yucca schidigera extract and chestnut tannins on composition and metabolic profiles of canine and feline faecal microbiota vol.71, pp.5, 2017,