Development of Porous Cellulose-Hydrogel System for Enhanced Transdermal Delivery of Quercetin and Rutin

Quercetin과 Rutin의 피부 흡수 증진을 위한 셀룰로오스 다공성 하이드로젤 제형 개발

  • Lee, Min Hye (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Soeul National University of Science and Technology) ;
  • Kim, Su Ji (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Soeul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, College of Energy and Biotechnology, Soeul National University of Science and Technology)
  • 이민혜 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 김수지 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 에너지바이오대학 정밀화학과, 화장품종합기술연구소)
  • Received : 2012.11.22
  • Accepted : 2013.01.22
  • Published : 2013.05.25


In this study, the porous cellulose hydrogel as a carrier to enhance the skin delivery of quercetin and its glycoside, rutin known as flavonoid antioxidants was prepared and its properties were investigated. The optimum cellulose hydrogel for quercetin and rutin was made by the reaction of 2 wt% cellulose with 12% ECH. In the release test of the hydrogel containing the flavonoids, the release of quercetin was diffusion-controlled at $10{\sim}500{\mu}M$, but rutin was released by the erosion of hydrogel system at $10{\sim}50{\mu}M$. Both the encapsulation efficiency and release amount of rutin in hydrogel were higher than quercetin. However, in skin permeation experiment using Franz diffusion cell, quercetin showed higher skin permeation capacity than rutin. The hydrogel containing flavonoids showed remarkable transdermal permeation than the control group. These results suggest that porous cellulose hydrogel is potential drug delivery system to enhance transdermal permeation of water-insoluble flavonoid antioxidants.


cellulose;hydrogel;quercetin;rutin;transdermal delivery


Supported by : 보건복지부


  1. C. Chang and L. Zhang, Carbohyd. Polym., 84, 40 (2011).
  2. S. J. Eichhorn, R. J. Young, and G. R. Davies, Biomacromolecules, 6, 507 (2005).
  3. D. Klemm, B. Heublein, H. Fink, and A. Bohn, Angew. Chem. Int. Ed., 44, 3358 (2005).
  4. J. Schurz, Prog. Polym. Sci., 24, 481 (1999).
  5. D. Ciolacu, A. M. Oprea, N. Anghel, G. Cazacu, and M. Cazacu, Mat. Sci. Eng. C-Mater., 32, 452 (2012).
  6. J. C. Fantone and P. A. Ward, Ann. J. Path., 107, 397 (1982).
  7. G. F. Vile and R. M. Tyrrell, Free Radical Biol. Med., 18, 721 (1995).
  8. T. F. Slater, Biochem. J., 222, 1 (1984).
  9. A. Oikarinen, J. Karvonen, J. Uitto, and M. Hannuksela, Photodermatology, 2, 15 (1985).
  10. J. J. Threle, C. Schroeter, S. N. Hsieh, M. Podda, and L. Packer, Curr. Probl. Dermatol., 29, 26 (2001).
  11. P. L. Rittger and N. A. Peppas, J. Control. Release, 5, 37 (1987).
  12. G. M. Khan and J. b. Zhu, J. Control. Release, 57, 197 (1999).
  13. J. H. Cha, J. K. Hong, S. W. Lee, J. U. Cha, W. H. Ko, H. H. Baek, and H. J. Park, Korean J. Food Sci. Technol., 44, 274 (2012).
  14. J. Siepmann and N. A. Peppas, Adv. Drug Deliv. Rev., 48, 139 (2001).
  15. J. Robak and R. J. Cryglewski, Pol. J. Pharmacol., 48, 555 (1996).
  16. I. Erlund, Nutr. Res., 24, 851 (2004).
  17. Y. Yamamoto and R. B. Gaynor, J. Clin. Invest., 107, 135 (2001).
  18. T. P. T. Cushnie and A. J. Lamb, Int. J. Antimicrob. Agents, 26, 343 (2005).
  19. R. R. de Sousa, K. C. Queiroz, A. C. Souza, S. A. Gurgueira, A. C. Augusto, M. A. Miranda, M. P. Peppelenbosch, C. V. Ferreira, and H. Aoyama, J. Enzyme Inhib. Med. Chem., 22, 439 (2007).
  20. C. F. Skibola and M. T. Smith, Free Radix, Biol. Med., 28, 375 (2000).
  21. C. A. Rice-Evans, N. J. Miller, and G. Paganga, Trends Plant Sci., 2, 152 (1997).
  22. I. Morel, G. Lescoat, P. Cogrel, O. Sergent, N. Pasdeloup, P. Brissot, P. Cillard, and J. Cilard, Biochem. Pharmacol., 45, 13 (1993).
  23. M. F. A. Bakar, M. Mohgamed, A. Rahmat, and J. Fry, Food Chem., 113, 479 (2009).
  24. J. Yang, J. Guo, and J. Tuan, LWT-Food Science and Technology, 41, 1060 (2008).
  25. C. Wangner, R. Fachineto, C. L. Morel, C. W. Nogueira, and J. B. T. Rocha, Brain Res., 1107, 192 (2006).
  26. A. Saija A. Tomaino, D. Trombetta, M. Giacchi, A. D. Pasquate, and F. Bonine, Int. J. Pharm., 175, 85 (1998).
  27. D. Paolino, G. Lucania, D. Mardente, F. Alhaique, and M. Fresta, J. Control. Release, 106, 99 (2005).
  28. L. Schwingel, D. Fasolo, M. Holzchuh, I. Lula, R. Sinisterra, L. Koester, H. Teixeira, and V. L. Bassani, J. Incl. Phenom. Macrocycl. Chem., 62, 149 (2008).
  29. S. N. Park, M. S. Lim, M. A. Park, S. S. Kwon, and S. B. Han, Polymer(Korea), 36, 705 (2012).
  30. G. N. Lim, S. Y. Kim, M. J. Kim, and S. N. Park, Polymer(Korea), 36, 420 (2012).
  31. J. Chen, S. Jo, and K. Park, Handbook of Biodegradable Polymers, Overseas Publishers Association, Amsterdam, p 203 (1997).
  32. N. A. Peppas, P. Bures, W. Leobandung, and H. Ichikawa, Eur. J. Pram. Biopharm., 50, 27 (2000).
  33. S. J. Park and C. H. Kim, Tissue Eng. Regen. Med., 4, 471 (2007).

Cited by

  1. Enhanced skin delivery of liquiritigenin and liquiritin-loaded liposome-in-hydrogel complex system vol.36, pp.6, 2014,
  2. tinctures vol.134, pp.41, 2017,