Synthesisand Electrochemical Behaviors of Hybrid Carbon (ACF/Graphene) as Supports by Microwaves-irradiation Method for Polymer Exchange Membrane Fuel Cells (PEMFC)

마이크로웨이브를 이용한 고분자 전해질 연료전지용 복합 탄소 촉매 지지체 (ACF/Graphene)의 합성과 전기화학적 거동

  • Cho, Yongil (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Jeon, Yukwon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Dae-Hwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Juon, So-Me (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Tae-Eon (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Oh, Kyeongseok (Department of Chemical and Environmental Technology, Inha Technical College) ;
  • Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 조용일 (연세대학교 화공생명공학과) ;
  • 전유권 (연세대학교 화공생명공학과) ;
  • 박대환 (연세대학교 화공생명공학과) ;
  • 전소미 (연세대학교 화공생명공학과) ;
  • 김태언 (연세대학교 화공생명공학과) ;
  • 오경석 (인하공업전문대학 화공환경과) ;
  • 설용건 (연세대학교 화공생명공학과)
  • Received : 2013.03.05
  • Accepted : 2013.04.26
  • Published : 2013.04.30


Carbon materials are mainly used as catalyst supports for polymer exchange membrane fuel cell (PEMFC). Catalyst supports are required specific characteristics of the carbon materials, such as large surface area and high electrical conductivity. Attempted were to improve electrical conductivity and to maintain high surface area of carbon materials using a microwave treatment. Microwave treatment, as a relatively new technique, takes short reaction time and reduce the consumption of the gases used for carbon treatment compared to a traditional heat treatment. Hybrid carbon (ACF/Graphene) as catalyst supports by microwave-irradiation method for PEMFC increase the cell performance because of increased electrical conductivity resulting in triple-phase contact and reduced the interfacial resistance. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-Ray Diffraction (XRD) were employed to analyze carbon materials. The performance of microwave-treated carbon materials was evaluated by measuring current-voltage (I-V) characteristics and electrode impedance.


Supported by : National Research Foundation of Korea


  1. H. P. Dhar, "On solid polymer fuel cells", J. Electroanal. Chem. Vol 357, 1993, pp. 237-250.
  2. A. J. Appleby,"Recent Developments and Applicationsof the Polymer Fuel Cell", Philos. Trans. R.Soc.London Ser. A., Vol. 354, p. 1681.
  3. J. P. Sheosmith, R. D. Collins, M. J. Oakley, and D. K. Stevenson, "Status of solid polymer fuel cellsystem development", J. Power Sources, Vol. 129, 1994, p. 49.
  4. J. H. Koh, J. A. Seo, S. H. Ahn, X, Zeng, and J. H. Kim, "Preparation of proton conducting an hydrous membranes using poly (vinyl chloride) comblikeopolymer", Membrane Journal, Vol. 89, 2009, p. 19.
  5. W. Grover Coors, "Protonic ceramic fuel cells for high-efficiency operation with methane", Journal of Power Sources, Vol. 118, 2003, pp. 150-156.
  6. H. M, Lee, H. Jeon, W. K. Choi, T. H. Cho, "Electrochemical Energy Storage of Milled Carbon Nanofiber", Trans. of the Korean Hydrogen and New Energy, 2011, Vol. 22, No. 4, pp. 527-533.
  7. W. Z. Li, C. H. Liang, W. J. Zhou, J. S. Qiu, Z. H. Zhou, G. Q. Sunand Q. Xin, "Preparation and Characterization of Multiwalled Carbon Nanotube- Supported Platinum for Cathode Catalysts of Direct Methanol Fuel Cells", J. Phys. Chem. B, 2003, Vol. 107, pp. 6292-6299.
  8. C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon and Y. S. Yan, "Proton Exchange Membrane Fuel Cells with Carbon Nanotube Based Electrodes", Nano Lett., 2004, Vol. 4, pp. 345-348.
  9. C. A. Bessel, K. Laubernds, N. M. Rodriguez and R. T. K. Baker, "Graphite Nanofibers as an Electrode for Fuel Cell Applications", J. Phys. Chem. B, 2001, Vol. 105, pp. 1115-1118.
  10. R. Kou, Y. Y. Shao, D. H. Wang, M. H. Engelhard, J. H. Kwak, J. Wang, V. V. Viswanathan, C. M. Wang, Y. H. Lin, Y. Wang, I. A. Aksay, J. Liu, "Graphene Based Electrochemical Sensors and Biosensors: A Review", Electrochem. Commun. 2009, Vol. 22, pp. 1027-1036.
  11. S. S. Park, J. K. Rhee, Y. K. Jeon, S. W. Choi, Y. G. Shul, "Preparation of Pt Catalysts Supported on ACF with CNF via Catalytic Growth", Carbon Lett., 2010, Vol. 11, p. 38.
  12. Chae, J. S., Ko, K. R., Jung, C. H., Rhee, B. S. and Ryu, S. K., "Fibrous Active Carbon from Pitch-based Hollow Carbon Fiber," HWAHAK KONGHAK, 1993, Vol. 31, No. 1, pp. 99-106.
  13. K. Ahn, C. Yang, S. Lee, "A Study on Electrochemical Characteristics of MEA with Nafion Ionomer Content in Catalyst Layer for PEMFC", Trans. Kor. Hydrogen New Energy Soc, Vol. 21, 2010, p. 540.
  14. I. Mochida, S. M. Zeng, Y. Korai, T. Hino and H. Toshima, "Structure and ... carbon fiber with a skin-core structure carbonized under strain", J. Mater. Sci., 1992, Vol. 27, pp. 1960-1968.
  15. E. Fitzer, "Carbon Fibers and Their Composites", UNFSSTD Spring er.Verlag., 1984, p. 9.
  16. A. H. C. Neto et al., "The Electronic Properties of Graphene," Rev. Mod. Phys., 2009, Vol. 81, No. 1, p. 109-162.
  17. K. I. Bolotin et al., "Ultrahigh Electron Mobility in Suspended Graphene," Solid State Commun., 2008, Vol. 146, pp. 351-355.
  18. T. Nakajima, "Surface modification of carbon anodes for secondary lithium battery by fluorination", J. Fluor. Chem., 2007, Vol. 128, p. 277.
  19. T. Nakajima, V. Gupta, Y. Ohzawa, M. Koh, R. N. Singh, A.Tressaud, E. Durand, "Electrochemical behavior of plasma-fluorinated graphite for lithium ion batteries", J. Power Sources, 2002, Vol. 104, pp. 108-114.
  20. D. I. Kim, J. G. Lee, Y. K. Kim, S. J. Yoon, "The Characteristics of Coal Gasification using Microwave Plasma", Trans. of the Korean Hydrogen and New Energy, 2012, Vol. 23, No. 1, p. 93.
  21. H. M. Kingston and L. B. Jassie, "Introduction to Microwave Sample Preparation Theory and Practice", American Chemical Society, 1988, Vol. 61, No. 18, p. 1048.
  22. Kap Seung Yang, Young Jo Yoon, Moo Sung Lee, Wan Jin Lee, Jong Ho Kim "Further carbonization of anisotropic and isotropic pitch-based carbons by microwave irradiation, Carbon, 2002, pp. 897-903.
  23. S. Miyauchi and E. Togashi, "The conduction mechanism of polymer-filler particles", 1985, Vol. 30, No. 7, pp. 2743-2751.
  24. T. J. Imholt, C. A. Dyke, B. Hasslacher, J. M. Perez, D. W. Price, J. A. Roberts, J. B. Scott, A. Wadhawan, Z. Ye, J. M. Tour, "Nanotubes in Microwave Fields: Light Emission, Intense Heat, Outgassing, and Reconstruction" Chem. Mater. 2003, Vol. 15, pp. 3969-3970.
  25. S. Y. Jeon, J. S. Lee, G. M. Rios, H. J. Kim, S. Y. Lee, E. A. Cho, T. H. Lim, J. H. Jang, "Effect of ionomer content and relative humidity on polymer electrolyte membrane fuel cell (PEMFC) performance of membrane-electrode assemblies (MEAs) prepared by decal transfer method", Int. J Hydrogen Energy, 2010, Vol. 35, pp. 9678-9686.
  26. S. Bhatt, B. Gupta, V. K. Sethi, and M. Pandey, "Polymer Exchange Membrane (PEM) Fuel Cell: A Review", Int. J. Curr. Eng. Tech., 2012, Vol. 2, No. 1, pp. 219-226.
  27. T. E. Springer, T. A. Zawodzinski, M. S. Wilson, and S. gottesfeld, "Characterization of Polymer Electrolyte Fuel Cell Using AC Impedance Spectroscopy", 1996, J. Electrochem. Soc., Vol. 143, No. 2, pp. 587-599.