DOI QR코드

DOI QR Code

Solar Energy Conversion by the Regular Array of TiO2 Nanotubes Anchored with ZnS/CdSSe/CdS Quantum Dots Formed by Sequential Ionic Bath Deposition

  • Park, Soojeong (School of Convergence Science and Technology, Seoul National University) ;
  • Seo, Yeonju (School of Chemistry, NS 60, Seoul National University) ;
  • Kim, Myung Soo (School of Chemistry, NS 60, Seoul National University) ;
  • Lee, Seonghoon (School of Convergence Science and Technology, Seoul National University)
  • Received : 2012.11.08
  • Accepted : 2012.12.17
  • Published : 2013.03.20

Abstract

The photoanode electrode of $TiO_2$ nanotubes (NTs) anchored with ZnS/CdSSe/CdS quantum dots (QDs) was prepared by anodization of Ti metal and successive ionic layer adsorption and reaction (SILAR) procedure. The tuning of the band gap of CdSSe was done with controlled composition of Cd, S, or Se during the SILAR. A ladder-like energy structure suitable for carrier transfer was attained with the photoanode electrode. The power conversion efficiency (PCE) of our solar cell fabricated with the regular array of $TiO_2$ NTs anchored with CdSSe/CdS or CdSe/CdS QDs [i.e., (CdSSe/CdS/$TiO_2NTs$) or (CdSe/CdS/$TiO_2NTs$)] was PCE = 3.49% and 2.81% under the illumination at 100 mW/$cm^2$, respectively. To protect the photocorrosion of our solar cell from the electrolyte and to suppress carrier recombination, ZnS was introduced onto CdSSe/CdS. The PCE of our solar cell with the structure of a photoanode electrode, (ZnS/CdSSe/CdS/$TiO_2$ NTs/Ti) was 4.67% under illumination at 100 mW/$cm^2$.

Acknowledgement

Supported by : NRF

References

  1. Karthik, S.; Craig, A. G. Nanotech. 2007, 18, 065707. https://doi.org/10.1088/0957-4484/18/6/065707
  2. Shin, Y.; Lee, S. Nano Let. 2008, 8, 3171. https://doi.org/10.1021/nl801422w
  3. Cheng, S.; Yang, L. J. Phys. Chem. C 2011, 116, 2615.
  4. Yang, K.; Whangbo, M.-H. J. Phys. Chem. C 2009, 113, 2624. https://doi.org/10.1021/jp808483a
  5. Ghicov, A.; Schmuki, P. Nano Lett. 2006, 6, 1080. https://doi.org/10.1021/nl0600979
  6. Long, R.; Dai, Y. J. Phys. Chem. C 2009, 113, 17464. https://doi.org/10.1021/jp904775g
  7. Choi, W.; Termin, A.; Hoffmann, M. R. J. Phys. Chem. 1994, 98, 13669. https://doi.org/10.1021/j100102a038
  8. Anpo, M.; Takeuchi, M. J. Catal. 2003, 216, 505. https://doi.org/10.1016/S0021-9517(02)00104-5
  9. Sun, W.-T.; Peng, L.-M. J. Am. Chem. Soc. 2008, 130, 1124. https://doi.org/10.1021/ja0777741
  10. Lee, Y.-L.; Chien, H.-T. Chem. Mater. 2008, 20, 6903. https://doi.org/10.1021/cm802254u
  11. Seabold, J. A.; Choi, K.-S. Chem. Mater. 2008, 20, 5266. https://doi.org/10.1021/cm8010666
  12. Lee, H.; Nazeeruddin, M. K. Adv. Funct. Mater. 2009, 19, 2735. https://doi.org/10.1002/adfm.200900081
  13. Vogel, R.; Weller, H. J. Phys. Chem. 1994, 98, 3183. https://doi.org/10.1021/j100063a022
  14. Yu-Jen, S.; Yuh-Lang, L. Nanotech. 2008, 19, 045602. https://doi.org/10.1088/0957-4484/19/04/045602
  15. Pan, A.; Wang, Z. J. Am. Chem. Soc. 2005, 127, 15692. https://doi.org/10.1021/ja056116i
  16. Pan, A. L.; Gosele, U. Nano Lett. 2008, 8, 3413. https://doi.org/10.1021/nl802202e
  17. Johnston, J. W. D. J. Appl. Phys. 1971, 42, 2731. https://doi.org/10.1063/1.1660614
  18. Hurwitz, C. E. Appl. Phys. Lett. 1966, 8, 243. https://doi.org/10.1063/1.1754420
  19. Zaban, A.; Nozik, A. J. Langmuir 1998, 14, 3153. https://doi.org/10.1021/la9713863
  20. Leschkies, K. S.; Aydil, E. S. Nano Lett. 2007, 7, 1793. https://doi.org/10.1021/nl070430o
  21. Robel, I.; Kamat, P. V. J. Am. Chem. Soc. 2006, 128, 2385. https://doi.org/10.1021/ja056494n
  22. Chang, C.-H.; Lee, Y.-L. Appl. Phys. Lett. 2007, 91, 053503. https://doi.org/10.1063/1.2768311
  23. Nicolau, Y. F. Appl. Surf. Sci. 1985, 22,1061.
  24. Lee, H.; Nazeeruddin, M. K. Nano Lett. 2009, 9, 4221. https://doi.org/10.1021/nl902438d
  25. Lee, H. J.; Park, S.-M. Chem. Mater. 2010, 22, 5636. https://doi.org/10.1021/cm102024s
  26. Guijarro, N. S.; Goìmez, R. J. Phys. Chem. C 2009, 113, 4208.
  27. Sven, R.; Arie, Z. Chem. Phys. Chem. 2010, 11, 2290. https://doi.org/10.1002/cphc.201000069
  28. Diguna, L. J.; Toyoda, T. Appl. Phys. Lett. 2007, 91, 023116. https://doi.org/10.1063/1.2757130
  29. Yang, S.-M.; Jiang, L. J. Mater. Chem. 2002, 12, 1459. https://doi.org/10.1039/b105796k
  30. Spanhel, L.; Henglein, A. J. Am. Chem. Soc. 1987, 109, 5649. https://doi.org/10.1021/ja00253a015
  31. Rho, C.; Suh, J. S. J. Phys. Chem. C 2012, 116, 7213. https://doi.org/10.1021/jp211708y
  32. Hong, L.; Wenzhong, S. Nanotech. 2011, 22, 155603. https://doi.org/10.1088/0957-4484/22/15/155603
  33. Ito, S.; Gratzel, M. Thin Solid Films 2008, 516, 4613. https://doi.org/10.1016/j.tsf.2007.05.090
  34. Liu, B.; Aydil, E. S. J. Am. Chem. Soc. 2009, 131, 3985. https://doi.org/10.1021/ja8078972
  35. Jennings, J. R.; Walker, A. B. J. Am. Chem. Soc. 2008, 130, 13364. https://doi.org/10.1021/ja804852z
  36. Banerjee, S.; Misra, M. Chem. Mater. 2008, 20, 6784. https://doi.org/10.1021/cm802282t
  37. Zhu, K.; Frank, A. J. Nano Lett. 2007, 7, 3739. https://doi.org/10.1021/nl072145a
  38. Mor, G. K.; Grimes, C. A. Nano Lett. 2005, 6, 215.
  39. Vegard, L. Zeitschrift fur Physik A Hadrons and Nuclei 1921, 5, 17. https://doi.org/10.1007/BF01349680
  40. Liang, Y.; Xu, D. J. Phys. Chem. B 2005, 109, 7120. https://doi.org/10.1021/jp045566e
  41. Swafford, L. A.; Rosenthal, S. J. J. Am. Chem. Soc. 2006, 128, 12299. https://doi.org/10.1021/ja063939e
  42. Myung, Y.; Park, J. ACS Nano 2010, 4, 3789. https://doi.org/10.1021/nn100684q
  43. Luo, J.; Fan, H. J. J. Phys. Chem. C 2012, 116, 11956. https://doi.org/10.1021/jp3031754
  44. Sung, T. K.; Lee, C.-L. J. Mater. Chem. 2011, 21, 4553. https://doi.org/10.1039/c0jm03818k

Cited by

  1. Studies on Structural, Morphological and Optical Properties of Chemically Deposited CdS1-xSex Thin Films vol.26, pp.2, 2016, https://doi.org/10.1007/s10895-015-1732-9
  2. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates vol.116, pp.11, 2014, https://doi.org/10.1063/1.4894445