Comparison of Carbon Dioxide Absorption in Aqueous MEA, DEA, TEA, and AMP Solutions

  • Kim, Young Eun (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Lim, Jin Ah (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Jeong, Soon Kwan (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Yoon, Yeo Il (Greenhouse Gas Department, Korea Institute of Energy Research) ;
  • Bae, Shin Tae (Materials Development Center, Hyundai Motor Group) ;
  • Nam, Sung Chan (Greenhouse Gas Department, Korea Institute of Energy Research)
  • 투고 : 2012.09.23
  • 심사 : 2012.12.08
  • 발행 : 2013.03.20


The separation and capture process of carbon dioxide from power plants is garnering interest as a method to reduce greenhouse gas emissions. In this study, aqueous alkanolamine solutions were studied as absorbents for $CO_2$ capture. The solubility of $CO_2$ in aqueous alkanolamine solutions was investigated with a continuous stirred reactor at 313, 333 and 353 K. Also, the heat of absorption ($-{\Delta}H_{abs}$) between the absorbent and $CO_2$ molecules was measured with a differential reaction calorimeter (DRC) at 298 K. The solubility and heat of absorption were determined at slightly higher than atmospheric pressure. The enthalpies of $CO_2$ absorption in monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), and 2-amino-2-methyl-1-propanol (AMP) were 88.91, 70.44, 44.72, and 63.95, respectively. This investigation showed that the heat of absorption is directly related to the quantity of heat for absorbent regeneration, and is dependent on amine type and $CO_2$ loading.


Carbon dioxide;Absorption;Alkanolamine;Heat of reaction


연구 과제 주관 기관 : Ministry of Knowledge Economy


  1. Oexmann, J. Int. J. Greenhouse Gas Cont. 2010, 4, 36.
  2. Kim, I.; Svendsen, H. F. Ind. Eng. Chem. Res. 2007, 46, 5803.
  3. Versteeg, G. F.; van Swaaij, W. P. M. Chem. Eng. Sci. 1988, 43, 573.
  4. Versteeg, G. F.; van Swaaij, W. P. M. Chem. Eng. Sci. 1988, 43, 587.
  5. Filburn, T.; Helblb, J. J.; Weiss, R. A. Ind. Eng. Chem. Res. 2005, 44, 1542.
  6. Hagewiesche, D. P.; Ashour, S. S.; Al-ghawas, H. A.; Sandall, O. C. Chem. Eng. Sci. 1995, 50, 1071.
  7. Ramachandran, N.; Aboudheir, A.; Idem, R.; Tontiwachwuthikul, P. Ind. Eng. Chem. Res. 2006, 45, 2608.
  8. Mathonat, C.; Majer, V.; Mather, A. E.; Groiler, J.-P. E. Fluid Phase Equilib. 1997, 140, 171.
  9. Arcis, H.; Rodier, L.; Coxam, J.-Y. J. Chem. Thermodynamics 2007, 39, 878.
  10. Kim, I.; Hoff, K. A.; Hessen, E. T.; Haug-Warberg, T.; Svendsen, H. F. Chem. Eng. Sci. 2009, 64, 2027.
  11. McCann, N.; Maeder, M.; Hasse, H. Energy Procedia 2011, 4, 1542.
  12. Nogent, H.; Le Tacon, X. J. Loss Prev. Process Ind. 2003, 16, 133.
  13. Carson, J. K.; Marsh, K. N.; Mather, A. E. J. Chem. Thermodynamics 2000, 32, 1285.
  14. Chowdhury, F. A.; Okabe, H.; Shimizu, S.; Onoda, M.; Fujioka, Y. Energy Procedia 2009, 1, 1214.
  15. Chowdhury, F. A.; Okabe, H.; Yamada, H.; Onoda, M.; Fujioka, Y. Energy Procedia 2011, 4, 201.

피인용 문헌

  1. Interaction with Various Aqueous Amine Structures vol.118, pp.25, 2014,
  2. Adsorption Thermodynamics over N-Substituted/Grafted Graphanes: A DFT Study vol.30, pp.7, 2014,
  3. Impact of speciation on CO2 capture performance using blended absorbent containing ammonia, triethanolamine and 2-amino-2-methyl-1-propanol vol.31, pp.7, 2014,
  4. Carbon Dioxide Absorption in Triethanolamine Aqueous Solutions: Hydrodynamics and Mass Transfer vol.37, pp.3, 2014,
  5. Capture Using Monoethanolamine in a Bubble-Column Scrubber vol.38, pp.2, 2014,
  6. and oxiranes: a DFT endorsed study vol.50, pp.89, 2014,
  7. Capture Efficiency, Corrosion Properties, and Ecotoxicity Evaluation of Amine Solutions Involving Newly Synthesized Ionic Liquids vol.53, pp.30, 2014,
  8. Ultrasound irradiation for desorption of carbon dioxide gas from aqueous solutions of monoethanolamine vol.53, pp.7S, 2014,
  9. Absorption Characteristics of Aqueous Solutions of Diamines: Absorption Capacity, Specific Heat Capacity, and Heat of Absorption vol.29, pp.4, 2015,
  10. 1-Amine-2-propanol + Triethanolamine Aqueous Blends for Carbon Dioxide Absorption in a Bubble Reactor vol.29, pp.8, 2015,
  11. capture by dry alkanolamines and an efficient microwave regeneration process vol.3, pp.12, 2015,
  12. Carbon Dioxide Capture from Reforming Gases using Acetic Acid-mixed Chemical Absorbents vol.36, pp.7, 2015,
  13. CO2 capture using aqueous solutions of K2CO3+2-methylpiperazine and monoethanolamine: Specific heat capacity and heat of absorption vol.33, pp.12, 2016,
  14. Reconciliation of outliers in CO2-alkanolamine-H2O datasets by robust neural network winsorization vol.28, pp.9, 2017,
  15. Capture and Mineralization in Various Alkanolamines Using Calcium Chloride vol.31, pp.1, 2017,
  16. Chemical Absorption of Carbon Dioxide Using Aqueous Piperidine Derivatives vol.40, pp.12, 2017,
  17. Calcium Carbonate Precipitation for CO2 Storage and Utilization: A Review of the Carbonate Crystallization and Polymorphism vol.5, pp.2296-598X, 2017,
  18. Absorption Capacity via Correlating Measured Electrical Conductivity in a Diethanolamine Solvent System Compared to Monoethanolamine Solvent Systems vol.62, pp.5, 2017,
  19. Effect of Carbonic Anhydrase on CO2 Absorption in Amine Solutions for CO2 Capture vol.39, pp.11, 2017,
  20. Assessing the potential of nanoporous carbon adsorbents from polyethylene terephthalate (PET) to separate CO2 from flue gas vol.24, pp.3, 2018,
  21. Role of Amine Type in CO2 Separation Performance within Amine Functionalized Silica/Organosilica Membranes: A Review vol.8, pp.7, 2018,
  22. capture performance using piperazine (PZ) and diethylenetriamine (DETA) bi-solvent blends pp.21523878, 2019,