DOI QR코드

DOI QR Code

Synthesis of YBa2Cu3O7-y Powder using a Powder Reaction Method and Fabrication of the Bulk Superconductors

분말 반응법에 의한 YBa2Cu3O7-y 합성과 벌크 초전도체의 제조

  • Jeon, Young Ju (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Park, Seung Yeon (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • You, Byung Youn (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Park, Soon-Dong (Neutron Science Division, Korea Atomic Energy Research Institute) ;
  • Kim, Chan-Joong (Neutron Science Division, Korea Atomic Energy Research Institute)
  • 전영주 (한국원자력연구원 중성자과학연구부) ;
  • 박승연 (한국원자력연구원 중성자과학연구부) ;
  • 유병윤 (한국원자력연구원 중성자과학연구부) ;
  • 박순동 (한국원자력연구원 중성자과학연구부) ;
  • 김찬중 (한국원자력연구원 중성자과학연구부)
  • Received : 2013.04.03
  • Accepted : 2013.04.15
  • Published : 2013.04.28

Abstract

$YBa_2Cu_3O_{7-y}$ (Y123) powders for the fabrication of bulk superconductors were synthesized by the powder reaction method using $Y_2O_3$ (99.9% purity), $BaCO_3$ (99.75%) and CuO (99.9%) powders. The raw powders were weighed to the cation ratio of Y:Ba:Cu=1:2:3, mixed and calcined at $880^{\circ}C-930^{\circ}C$ in air with intermediate repeated crushing steps. It was found that the formation of Y123 powder was more sensitive to reaction temperature than reaction time. The calcined Y123 powder and a mixture of (Y123 + 0.25 mole $Y_2O_3$ + 1 wt.% $CeO_2$, $Y_{1.5}Ba_2Cu_3O_x$ (Y1.5)) were used as raw powders for the fabrication of poly-grain or single grain superconductors. The superconducting transition temperature ($T_{c,onset}$) of the sintered Y123 sample was 91 K and the transition width was as large as 11 K, whereas the $T_{c,onset}$ of the melt-grown Y1.5 sample was 90.5 K and the transition width was 3.5 K. The critical current density ($J_c$) at 77 K and 0 T of the sintered Y123 was 700 $A/cm^2$, whereas the $J_c$ of the top-seeded melt growth (TSMG) processed Y1.5 sample was $3.2{\times}10^4\;A/cm^2$. The magnetic flux density (H) at 77 K of the TSMG-processed Y123 and Y1.5 sample showed the 0.53 kG and 2.45 kG, respectively, which are 15% and 71% of the applied magnetic field of 3.5 kG. The high H value of the TSMG-processed Y1.5 sample is attributed to the formation of the larger superconducting grain with fine Y211 dispersion.

Acknowledgement

Supported by : 교육과학기술부

References

  1. M. K. Wu, J. R. Ashburn, C. J. Thorng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Q. Wang and C. W. Chu: Phys. Rev. Lett., 58 (1987) 908 https://doi.org/10.1103/PhysRevLett.58.908
  2. M. Murakami, M. Morita, K. Doi and K. Miyamoto: Jpn. J. Appl. Phys., 28 (1989) 1189. https://doi.org/10.1143/JJAP.28.1189
  3. K. Matsunaga, M. Tomita, N. Yamachi, K. Iida, J. Yoshioka and M. Murakami: Supercond. Sci. Technol., 15 (2002) 842. https://doi.org/10.1088/0953-2048/15/5/341
  4. C.-J. Kim and G.-W. Hong: Supercond. Sci. Technol., 12 (1999) R27. https://doi.org/10.1088/0953-2048/12/3/001
  5. K. Nagashima, T. Higuchi, J. Sok, S. I. Yoo, H. Fujimoto and M. Murakami: Cryogenics, 37 (1997) 577. https://doi.org/10.1016/S0011-2275(97)00058-1
  6. H. Hayashi, K. Tsutsumi, N. Saho, N. Nishizima and K. Asano: Physica C, 392-396 (2003) 745. https://doi.org/10.1016/S0921-4534(03)01214-0
  7. H. Salamati, A. Babaei-Brojeny and M. Safa: Supercond. Sci. Technol., 14 (2001) 816. https://doi.org/10.1088/0953-2048/14/10/302
  8. T. Haugan, P. N. Barnes, R. Wheeler, F. Meisenkothen and M. Sumption: Nature, 430 (2004) 867. https://doi.org/10.1038/nature02792
  9. L. Zhou, P. Zhang, P. Ji, K. Wang, J. Wang and X. Wu: Supercond. Sci. Technol., 3 (1990) 490. https://doi.org/10.1088/0953-2048/3/10/002
  10. S. R. Foltyn, L. Civale, J. L. MacManus-Driscoll, Q. X. Jia, B. Maiorov, H. Wang and M. Maley: Nature Mater., 6 (2007) 631. https://doi.org/10.1038/nmat1989
  11. E. Dantsker S. Tanaka and J. Clarke, Appl. Phys. Lett., 70 (1997) 2037. https://doi.org/10.1063/1.118776
  12. Y. A. Jee, C.-J. Kim, T.-H. Sung and G.-W. Hong: Supercond. Sci. Technol., 13 (2000) 195. https://doi.org/10.1088/0953-2048/13/2/314
  13. C.-J. Kim, H.-Jin Kim, J.-W. Sun, B. K. Ji, H.-S. Kim, Jinho Joo, B.-H. Jun, C.-H. Jung, S.-D. Park, H.-W. Park and G.-W. Hong: Physica C, 386 (2003) 327. https://doi.org/10.1016/S0921-4534(02)02151-2
  14. C.-J. Kim, H.-J. Kim, J.-H. Joo, G.-W. Hong, S.-C. Han, Y.-H. Han, T.-H. Sung and S.-J. Kim: Physica C, 336 (2000) 233. https://doi.org/10.1016/S0921-4534(00)00292-6
  15. K. Kishio, J. Shimoyama, T. Hasegawa, K. Kitazawa and K. Fueki: Jpn. J. Appl. Phys., 26 (1987) L1228. https://doi.org/10.1143/JJAP.26.L1228
  16. C.-J. Kim, K.-B. Kim, I.-H. Kuk, G.-W. Hong, Y.-S. Lee and H.-S. Park: Supercond. Sci. Technol., 10 (1997) 947. https://doi.org/10.1088/0953-2048/10/12/019
  17. C. P. Bean: Rev. Mod. Phys., 36 (1964) 446.
  18. C.-J. Kim, H.-W. Park, K.-B. Kim and G.-W. Hong: Supercond. Sci. Technol., 8 (1995) 652. https://doi.org/10.1088/0953-2048/8/8/009
  19. M. Murakami: Mod. Phys. Lett., B, 4 (1990) 163. https://doi.org/10.1142/S0217984990000234