DOI QR코드

DOI QR Code

Microwave Absorbing Properties of Rubber Composites Containing Soft Magnetic Fe-Alloy Particles

철계 연자성 합금 분말을 함유한 고무 복합재의 전파흡수특성

  • Cho, Han-Shin (Department of Advanced Materials Engineering Chungbuk National University) ;
  • Kim, Sung-Soo (Department of Advanced Materials Engineering Chungbuk National University)
  • 조한신 (충북대학교 신소재공학과) ;
  • 김성수 (충북대학교 신소재공학과)
  • Received : 2013.03.11
  • Accepted : 2013.04.15
  • Published : 2013.04.28

Abstract

Magnetic and dielectric properties of rubber composites are controlled by using two kinds of high-permeability metal particles with different electrical conductivity (Sendust, Permalloy), and their effect on microwave absorbance has been investigated, focusing on the quasi-microwave frequency band (0.8-2 GHz). Noise absorbing sheets are composite materials of magnetic flake particles of high aspect ratio dispersed in polymer matrix with various filler amount of 80-90 wt.%. The frequency dispersion and magnitude of complex permeability is almost the same for Sendust and Permalloy composite specimens. However, the complex permittivity of the Permalloy composite (${{\varepsilon}_r}^{\prime}{\simeq}250$, ${{\varepsilon}_r}^{{\prime}{\prime}}{\simeq}50$) is much greater than that of Sendust composite (${{\varepsilon}_r}^{\prime}{\simeq}70$, ${{\varepsilon}_r}^{{\prime}{\prime}}{\simeq}0$). Due to the large dielectric permittivity of Permalloy composite, the absorbing band is shifted to lower frequency region. However, the investigation of impedance matching reveals that the magnetic permeability is still small to satisfy the zero-reflected condition at the quasi-microwave frequency band, resulting in a small microwave absorbance lower than 10 dB.

Acknowledgement

Supported by : 한국연구재단

References

  1. M. Hirou: Electromagnetic Shielding and Absorbing Practical Technology Practical Manual, Mimatsu Co. Tokyo, 2006.
  2. H. W. Ott: Noise Reduction Techniques in Electronic Systems, John Wiely & Sons, New York, 1975.
  3. S. Yoshida, M. Sato, E. Sugawara and Y. Shimada: J. Appl. Phys., 35 (1999) 4636.
  4. M. Matsumoto and Y. Miyata: IEEE Trans. Magn., 33 (1994) 4459.
  5. O. Hashimoto, Y. Takase and S. Haga: Trans. IEICE Japan, J86-B(1) (2003) 113.
  6. J. Smit and H. P. J. Wijn: Ferrites, Philips Technical Library, Eindhoven, 1959.
  7. S.-S. Kim, S.-T. Kim, Y.-C. Yoon and K.-S. Lee: J. Appl. Phys., 97 (2005) 10F905. https://doi.org/10.1063/1.1852371
  8. S.-T. Kim, H.-S. Cho and S.-S. Kim: IEEE Trans. Magn., 41 (2005) 3562. https://doi.org/10.1109/TMAG.2005.855186
  9. S. S. Kim, S. B. Jo, K. I. Gueon, K. K. Choi, J. M. Kim and K. S. Churn, IEEE Trans. Magn., 27 (1991) 5462. https://doi.org/10.1109/20.278872
  10. Y.-K. Park and K.-J. Yang, J. Kor. Inst. Elect. & Electr. Mater. Eng., 9 (1996) 76.
  11. A. M. Nicolson and G. F. Ross, IEEE Trans. Instrum. Mes. 19 (1970) 377. https://doi.org/10.1109/TIM.1970.4313932
  12. Y. Naito and K. Suetake: IEEE Trans. MTT. 19 (1971) 65. https://doi.org/10.1109/TMTT.1971.1127446
  13. H. M. Musal, Jr. and H. T. Hahn: IEEE Trans. Magn. 25 (1989) 3851. https://doi.org/10.1109/20.42454

Cited by

  1. Electromagnetic Wave Shielding Effect of Nano-powder Dispersed Epoxy Resin Composite vol.22, pp.4, 2015, https://doi.org/10.4150/KPMI.2015.22.4.234
  2. Thermo-oxidative stability of rubber magnetic composites cured with sulfur, peroxide and mixed curing systems vol.47, pp.7, 2018, https://doi.org/10.1080/14658011.2018.1492270