DOI QR코드

DOI QR Code

Facile Synthesis of Highly Dispersed Ultra-fine ZrC Powders by Carbothermal Reduction Method Using Nanosized ZrO2 and Nanosized Graphite Powder Mixtures

나노크기의 ZrO2와 Graphite 분말 혼합체의 열탄소환원법에 의한 고분산 초미립 ZrC 분말의 합성

  • Lee, Wha-Jun (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Ryu, Sung-Soo (Engineering Ceramics Center, Korea Institute of Ceramic Engineering and Technology)
  • 이화준 (한국세라믹기술원 엔지니어링세라믹센터) ;
  • 류성수 (한국세라믹기술원 엔지니어링세라믹센터)
  • Received : 2013.02.08
  • Accepted : 2013.04.17
  • Published : 2013.04.28

Abstract

Ultra-fine zirconium carbide (ZrC) powder with nano-sized primary particles was synthesized by the carbothermal reduction method by using nano-sized $ZrO_2$ and nano-sized graphite powders mixture. The synthesized ZrC powder was well dispersed after simple milling process. After heat-treatment at $1500^{\circ}C$ for 2 h under vacuum, ultra-fine ZrC powder agglomerates (average size, $4.2{\mu}m$) were facilely obtained with rounded particle shape and particle size of ~200 nm. Ultra-fine ZrC powder with an average particle size of 316 nm was obtained after ball milling process in a planetary mill for 30 minutes from the agglomerated ZrC powder.

References

  1. L. E. Toth: New York: Academic Press (1971).
  2. A. J. Perry: Powder Metall. Int., 19 (1987) 29.
  3. K. Upadhya, J. M. Yan and W. P. Hoffman: Bull. Amer. Ceram. Soc., 76 (1997) 51.
  4. M. M. Opeka, I. G. Talmy, E. J. Wuchina, J. A. Zaykosi and S. J. Causey: J. Eur. Ceram. Soc., 19 (1999) 2405. https://doi.org/10.1016/S0955-2219(99)00129-6
  5. W. A. Mackie, T. B. Zie, M. R. Matthews, B. P. Routh and P. R. Davis: J. Vac. Sci. Technol. B, 16 (1998) 2057.
  6. K. Minato, T. Ogawa, K. Sawa, A. Ishikawa, T. Tomita and S. Iida: Nucl. Technol., 130 (2000) 272. https://doi.org/10.13182/NT00-A3093
  7. A. Maitre and P. Lefort: Solid State Ion., 104 (1997) 109. https://doi.org/10.1016/S0167-2738(97)00398-6
  8. J. Dong, W. Shew, X. Liu, X. Hu, B. Zhang and F. Kang: Mater. Res. Bull., 36 (2010) 933.
  9. M. D. Sacks, C. A. Wang, Z. H. Yang and A. Jain: J. Mater. Sci., 39 (2004) 6057. https://doi.org/10.1023/B:JMSC.0000041702.76858.a7
  10. Y. Yan, Z. Huang, X. Liu and D. Jiang: J. Sol-Gel Sci. Technol., 44 (2007) 81. https://doi.org/10.1007/s10971-007-1595-x
  11. A. A. Mahday, M. Sherif El-Eskandarany, H. A. Ahmed and A. A. Amer: J. Alloys Compd., 299 (2000) 244 . https://doi.org/10.1016/S0925-8388(99)00679-9
  12. J. Li, J. Y. Fu, W. M. Wang, H. Wang, S. H. Lee and K. Niihara: Ceramics International, 36 (2010) 1681. https://doi.org/10.1016/j.ceramint.2010.03.013
  13. M. S. Song and B. Huang: Powder Technol., 191 (2009) 34. https://doi.org/10.1016/j.powtec.2008.09.005
  14. X. Tao, W. Qiu, H. Li and T. Zhao: Polym. Adv. Technol., 21 (2010) 300.
  15. M. S. Seo, S. Kang, Y. M. Kim and S. S. Ryu: Int. J. Refractory metals and Hard materials, in review (2012).
  16. S. S. Ryu: J. Korean Powder Metall. Inst., 19 (2012) 310 (Korean). https://doi.org/10.4150/KPMI.2012.19.4.310
  17. M. T. Buscaglia, M. Bassoli and V. Buscaglia: J. Am. Ceram. Soc., 88 (2005) 2374. https://doi.org/10.1111/j.1551-2916.2005.00451.x
  18. G. M. Song, Y. J. Wang and Y. Zhou: J. Mater. Sci., 36 (2001) 4625. https://doi.org/10.1023/A:1017989913219
  19. T. Zhang, Y. Wang, Y. Zhou and G. Song: Mater. Sci. Eng. A, 527 (2010) 4021. https://doi.org/10.1016/j.msea.2010.03.008
  20. X. L. Cui, L. S. Cui, M. Qi and L. Wang: Pet. Sci. Technol., 20 (2002) 999. https://doi.org/10.1081/LFT-120003693