DOI QR코드

DOI QR Code

Effects of Dietary Supplementation with Hainanmycin on Protein Degradation and Populations of Ammonia-producing Bacteria In vitro

  • Wang, Z.B. (College of Animal Science and Technology, Northeast Agricultural University) ;
  • Xin, H.S. (College of Animal Science and Technology, Northeast Agricultural University) ;
  • Wang, M.J. (College of Animal Science and Technology, Northeast Agricultural University) ;
  • Li, Z.Y. (College of Animal Science and Technology, Northeast Agricultural University) ;
  • Qu, Y.L. (College of Animal Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Miao, S.J. (College of Animal Science and Technology, Heilongjiang Bayi Agricultural University) ;
  • Zhang, Y.G. (College of Animal Science and Technology, Northeast Agricultural University)
  • Received : 2012.10.22
  • Accepted : 2012.12.28
  • Published : 2013.05.01

Abstract

An in vitro fermentation was conducted to determine the effects of hainanmycin on protein degradation and populations of ammonia-producing bacteria. The substrates (DM basis) for in vitro fermentation consisted of alfalfa hay (31.7%), Chinese wild rye grass hay (28.3%), ground corn grain (24.5%), soybean meal (15.5%) with a forage: concentrate of 60:40. Treatments were the control (no additive) and hainanmycin supplemented at 0.1 (H0.1), 1 (H1), 10 (H10), and 100 mg/kg (H100) of the substrates. After 24 h of fermentation, the highest addition level of hainanmycin decreased total VFA concentration and increased the final pH. The high addition level of hainanmycin (H1, H10, and H100) reduced (p<0.05) branched-chain VFA concentration, the molar proportion of acetate and butyrate, and ratio of acetate to propionate; and increased the molar proportion of propionate, except that for H1 the in molar proportion of acetate and isobutyrate was not changed (p>0.05). After 24 h of fermentation, H10 and H100 increased (p<0.05) concentrations of peptide nitrogen and AA nitrogen and proteinase activity, and decreased (p<0.05) $NH_3$-N concentration and deaminase activity compared with control. Peptidase activitives were not affected by hainanmycin. Hainanmycin supplementation only inhibited the growth of Butyrivibrio fibrisolvens, which is one of the species of low deaminative activity. Hainanmycin supplementation also decreased (p<0.05) relative population sizes of hyper-ammonia-producing species, except for H0.1 on Clostridium aminophilum. It was concluded that dietary supplementation with hainanmycin could improve ruminal fermentation and modify protein degradation by changing population size of ammonia-producing bacteria in vitro; and the addition level of 10 mg/kg appeared to achieve the best results.

Keywords

Ammonia-producing Bacteria;Fermentation;Hainanmycin;Protein Degradation

References

  1. Weimer, P. J., D. M. Stevenson, D. R. Mertens and E. E. Thomas. 2008. Effect of monensin feeding and withdrawal on populations of individual bacterial species in the rumen of lactating dairy cows fed high-starch rations. Appl. Microbiol. Biotechnol. 80:135-145. https://doi.org/10.1007/s00253-008-1528-9
  2. Whetstone, H. D., C. L. Davis and M. P. Bryant. 1981. Effect of monensin on breakdown of protein by ruminal microorganisms in vitro. J. Anim. Sci. 53:803-809.
  3. Winter, K. A., R. R. Johnson and B. A. Dehority. 1964. Metabolism of urea nitrogen by mixed cultures of rumen bacteria grown on cellulose. J. Dairy Sci. 47:793-797. https://doi.org/10.3168/jds.S0022-0302(64)88766-X
  4. Wolin, M. J. and T. L. Miller. 1988. Microbe-microbe interactions. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson). Elsevier Applied Science, London, UK. pp. 343-359.
  5. Yang, C. M. and J. B. Russell. 1993a. Effect of monensin on the specific activity of ammonia production by ruminal bacteria and disappearance of amino nitrogen from the rumen. Appl. Environ. Microbiol. 59:3250-3254.
  6. Yang, C. M. and J. B. Russell. 1993b. The effect of monensin supplementation on ruminal ammonia accumulation in vivo and the numbers of amino acid-fermenting bacteria. J. Anim. Sci. 71:3470-3476.
  7. Miller, T. L. and S. E. Jenesel. 1979. Enzymology of butyrate formation by Butyrivibrio fibrisolvens. J. Bacteriol. 138:99-104.
  8. Newbold, C. J., R. J. Wallace and N. McKain. 1990. Effects of the ionophore tetronasin on nitrogen metabolism by ruminal microorganisms in vitro. J. Anim. Sci. 68:1103-1109.
  9. NRC. 2001. Nutrient requirements of dairy cattle. 7th Rev. Ed. National Academy Press, Washington, DC, USA.
  10. Ren, M. Q., Z. M. Shen, R. Q. Zhao, T. S. Lu and J. Chen. 1998. Effects of novel polyether ionophore hainanmycin on nutrient digestion, metabolism and ruminal characteristics of goats. J. Anim. Feed Sci. 7:21-28.
  11. Russell, J. B. and H. J. Strobel. 1989. Effect of ionophores on ruminal fermentation. Appl. Environ. Microbiol. 55:1-6.
  12. Stahl, D. A., B. Flesher, H. R. Mansfield and L. Montgomery. 1988. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl. Environ. Microbiol. 54:1079-1084.
  13. Stevenson, D. M. and P. J. Weimer. 2007. Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR. Appl. Microbiol. Biotechnol. 75:165-174. https://doi.org/10.1007/s00253-006-0802-y
  14. Tamminga, S. 1979. Protein degradation in the forestomachs of ruminants. J. Anim. Sci. 49:1615-1630.
  15. Uwituze, S., G. L. Parsons, K. K. Karges, M. L. Gibson, L. C. Hollis, J. J. Higgins and J. S. Drouillard. 2011. Effects of distillers grains with high sulfur concentration on ruminal fermentation and digestibility of finishing diets. J. Anim. Sci. 89:2817-2828. https://doi.org/10.2527/jas.2010-3401
  16. van Gylswyk, N. O. 1990. Enumeration and presumptive identification of some functional groups of bacteria in the rumen of dairy cows fed grass silage-based diets. FEMS Microbiol. Lett. 73:243-261. https://doi.org/10.1111/j.1574-6968.1990.tb03948.x
  17. Van Nevel, C. J. and D. I. Demeyer. 1977. Effect of monensin on rumen metabolism in vitro. Appl. Environ. Microbiol. 34:251-257.
  18. Van Nevel, C. J. and D. I. Demeyer. 1988. Manipulation of rumen fermentation. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson). Elsevier Applied Science, London, UK. pp. 387-443.
  19. Van Soest, P. J. 1994. Nutritional ecology of the ruminant. 2nd edn. Cornell University Press, New York, New York.
  20. Wallace, R. J. 1983. Hydrolysis of 14C-labelled proteins by rumen microorganisms and by proteolytic enzymes prepared from rumen bacteria. Br. J. Nutr. 50:345-355. https://doi.org/10.1079/BJN19830102
  21. Wallace, R. J. and N. McKain. 1989. Analysis of peptide metabolism by ruminal microorganisms. Appl. Environ. Microbiol. 55:2372-2376.
  22. Wallace, R. J., R. Onodera and M. A. Cotta. 1997. Metabolism of nitrogencontaining compounds. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Chapman & Hall, London, England. pp. 283-323.
  23. Brockman, R. P. 1993. Glucose and short-chain fatty acid metabolism. In: Quantitative Aspects of Ruminant Digestion and Metabolism (Ed. J. M. Forbes and J. France). CAB International, London, UK. pp. 249-265.
  24. Broderick, G. A. and J. H. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63:64-75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8
  25. Callaway, T. R., K. A. Adams and J. B. Russell. 1999. The ability of "low G+C gram-positive" ruminal bacteria to resist monensin and counteract potassium depletion. Curr. Microbiol. 39:226-230. https://doi.org/10.1007/s002849900449
  26. Callaway, T. R., A. M. Carneiro De Melo and J. B. Russell. 1997. The effect of nisin and monensin on ruminal fermentations in vitro. Curr. Microbiol. 35:90-96. https://doi.org/10.1007/s002849900218
  27. Chen, G. and J. B. Russell. 1989. More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl. Environ. Microbiol. 55:1052-1057.
  28. Ghorbani, B., T. Ghoorchi, H. Amanlou and S. Zerehdaran. 2008. Effects of monensin and increasing crude protein in early lactation on performance of dairy cows. Pak. J. Biol. Sci. 11:1669-1675. https://doi.org/10.3923/pjbs.2008.1669.1675
  29. Jalc, D. and A. Laukova. 2002. Effect of nisin and monensin on rumen fermentation in the artificial rumen. Berl. Munch. Tierarztl. Wochenschr. 115:6-10.
  30. Krause, D. O. and J. B. Russell. 1996. An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination. Appl. Environ. Microbiol. 62:815-821.
  31. Leng, R. A. and J. V. Nolan. 1984. Nitrogen metabolism in the rumen. J. Dairy Sci. 67:1072-1089. https://doi.org/10.3168/jds.S0022-0302(84)81409-5
  32. Mackie, R. I. and B. A. White. 1990. Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient output. J. Dairy Sci. 73:2971-2995. https://doi.org/10.3168/jds.S0022-0302(90)78986-2
  33. Martineau, R., C. Benchaar, H. V. Petit, H. Lapierre, D. R. Ouellet, D. Pellerin and R. Berthiaume. 2007. Effects of lasalocid or monensin supplementation on digestion, ruminal fermentation, blood metabolites, and milk production of lactating dairy cows. J. Dairy Sci. 90:5714-5725. https://doi.org/10.3168/jds.2007-0368
  34. Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 93:217-222. https://doi.org/10.1017/S0021859600086305

Cited by

  1. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation vol.9, pp.1, 2018, https://doi.org/10.1186/s40104-018-0249-x