DOI QR코드

DOI QR Code

Phylogeographic and Feeding Ecological Effects on the Mustelid Faunal Assemblages in Japan

  • Sato, Jun J. (Laboratory of Animal Cell Technology, Faculty of Life Science and Technology, Fukuyama University)
  • Received : 2012.12.25
  • Accepted : 2013.04.10
  • Published : 2013.04.30

Abstract

Phylogeographic and feeding ecological studies of seven terrestrial mustelid species (Carnivora, Mustelidae), the Japanese marten Martes melampus, the sable Martes zibellina, the Japanese badger Meles anakuma, the ermine or the stoat Mustela erminea, the Japanese weasel Mustela itatsi, the least weasel Mustela nivalis, and the Siberian weasel Mustela sibirica, representing four biogeographic patterns in the Japanese archipelagos (Hokkaido, Honshu-Shikoku-Kyushu, Tsushima, and Hokkaido-Honshu), were reviewed in order to clarify causes for the faunal assemblage processes of those mustelid species in Japan. Here, three main constraints were extracted as important factors on the mustelid assemblage. First, fundamental evolutionary differences maintained by niche conservatism in each ecologically diversified lineage ("evolutionary constraint") would enable the species to co-occur without any major problem (coexistence among Martes, Meles, and Mustela species). Second, "ecological constraints" would force two closely related species to be allopatric by competitive exclusion (Mu. itatsi and Mu. sibirica) or to be sympatric by resource partitions (Mu. erminea and Mu. nivalis). Third and most importantly, "geological constraints" would allow specific species to be embraced by a particular geographic region, primarily deciding which species co-occurs. The allopatric distribution of two Martes species in Japan would have been established by the strong effect of the geological separation in Tsugaru Strait. Elucidating both phylogeny and ecology of co-existing species in a community assemblage is important to know which species possess distinct lineage and which ecological traits are adapted to local environments, fulfilling the requirement of the field of conservation biology that endemism and adaptation should both be considered. The Japanese archipelagos would, therefore, provide valuable insight into the conservation for small carnivoran species.

References

  1. Abramov AV, 2002. Variation of the baculum structure of the Palaearctic badger (Carnivora, Mustelidae, Meles). Russian Journal of Theriology, 1:57-60. https://doi.org/10.15298/rusjtheriol.01.1.04
  2. Abramov AV, 2003. The head colour pattern of the Eurasian badgers (Mustelidae, Meles). Small Carnivore Conservation, 29:5-7.
  3. Abramov AV, Baryshnikov GF, 2000. Geographic variation and intraspecific taxonomy of weasel Mustela nivalis (Carnivora, Mustelidae). Zoosystematica Rossica, 8:365-402.
  4. Allendorf FW, Hohenlohe PA, Luikart G, 2010. Genomics and the future of conservation genetics. Nature Review Genetics, 11:697-709.
  5. Anderson E, 1970. Quaternary evolution of the genus Martes (Carnivora, Mustelidae). Acta Zoologica Fennica, 130:1- 132.
  6. Arai S, Adachi T, Kuwahara Y, Yoshida K, 2003. Food habit of the Japanese marten (Martes melampus) at Kuju highland in Kyushu, Japan. Mammalian Science, 43:19-28 (in Japanese with English abstract).
  7. Asahi M, 1975. Contents of alimentary canals of weasels collected in Kinki district, with a consideration of their caloric nutrition. Zoological Magazine, 84:190-195 (in Japanese with English abstract).
  8. Cardillo M, 2011. Phylogenetic structure of mammal assemblages at large geographical scales: linking phylogenetic community ecology with macroecology. Philosophical Transactions of the Royal Society B Biological Sciences, 366: 2545-2553. https://doi.org/10.1098/rstb.2011.0021
  9. Cardillo M, Gittleman JL, Purvis A, 2008. Global patterns in the phylogenetic structure of island mammal assemblages. Proceedings of the Royal Society of London Series B Biological Sciences, 275:1549-1556. https://doi.org/10.1098/rspb.2008.0262
  10. Cerro ID, Marmi J, Ferrando A, Chashchin P, Taberlet P, Bosch M, 2010. Nuclear and mitochondrial phylogenies provide evidence for four species of Eurasian badgers (Carnivora). Zoologica Scripta, 39:415-425. https://doi.org/10.1111/j.1463-6409.2010.00436.x
  11. Collen B, Turvey ST, Waterman C, Meredith HMR, Kuhn TS, Baillie JEM, Isaac NJB, 2011. Investing in evolutionary history: implementing a phylogenetic approach for mammal conservation. Philosophical Transactions of the Royal Society B Biological Sciences, 366:2611-2622. https://doi.org/10.1098/rstb.2011.0109
  12. de Guia APO, Saitoh T, 2007. The gap between the concept and definitions in the evolutionarily significant unit: the need to integrate neutral genetic variation and adaptive variation. Ecological Research, 22:604-612. https://doi.org/10.1007/s11284-006-0059-z
  13. Dobson M, 1994. Patterns of distribution in Japanese land mammals. Mammal Review, 24:91-111. https://doi.org/10.1111/j.1365-2907.1994.tb00137.x
  14. Dobson M, Kawamura Y, 1998. Origin of the Japanese land mammal fauna: allocation of extant species to historicallybased categories. The Quaternary Research, 37:385-395. https://doi.org/10.4116/jaqua.37.385
  15. Elmeros M, 2006. Food habits of stoats Mustela erminea and weasels Mustela nivalis in Denmark. Acta Theriologica, 51:179-186. https://doi.org/10.1007/BF03192669
  16. Erlinge S, Sandell M, 1988. Coexistence of stoat, Mustela erminea, and weasel, M. nivalis: social dominance, scent communication, and reciprocal distribution. Oikos, 53:242- 246. https://doi.org/10.2307/3566069
  17. Frankham R, Ballou JD, Briscoe DA, 2010. Introduction to conservation genetics. 2nd ed. Cambridge University Press, Cambridge, pp. 1-642.
  18. Fu YX, 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147:915-925.
  19. Fujii T, Maruyama N, Kanzaki N, 1998. Seasonal changes in food habits of Japanese weasel in a middle stream of the Tamagawa River. Mammalian Science, 38:1-8 (in Japanese).
  20. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW, 2012. Harnessing genomics for delineating conservation units. Trends in Ecology and Evolution, 27:489-496. https://doi.org/10.1016/j.tree.2012.05.012
  21. Furuya Y, Kishida R, Sendo K, Noguchi K, Yamasaki M, 1979. Seasonal changes of food habit of weasels (Mustela sibirica) in Nishikuma Valley, Kochi Prefecture. The Journal of the Mammalogical Society of Japan, 8:1-11 (in Japanese).
  22. Grant PR, 1966. Ecological compatibility of bird species on islands. The American Naturalist, 100:451-462. https://doi.org/10.1086/282438
  23. Grant PR, 1970. Colonization of islands by ecologically dissimilar species of mammals. Canadian Journal of Zoology, 48:545-553. https://doi.org/10.1139/z70-091
  24. Hamao S, Nishimatsu K, Kamito T, 2009. Predation of bird nests by introduced Japanese Weasel Mustela itatsi on an island. Ornithological Science, 8:139-146. https://doi.org/10.2326/osj.8.139
  25. Hardin G, 1960. The competitive exclusion principle. Science, 131:1292-1297. https://doi.org/10.1126/science.131.3409.1292
  26. Hosoda T, Sato JJ, Lin LK, Chen YJ, Harada M, Suzuki H, 2011. Phylogenetic history of mustelid fauna in Taiwan inferred from mitochondrial genetic loci. Canadian Journal of Zoology, 89:559-569. https://doi.org/10.1139/z11-029
  27. Hosoda T, Suzuki H, Harada M, Tsuchiya K, Han SH, Zhang YP, Kryukov AP, Lin LK, 2000. Evolutionary trends of the mitochondrial lineage differentiation in species of genera Martes and Mustela. Genes & Genetic Systems, 75:259-267. https://doi.org/10.1266/ggs.75.259
  28. Hosoda T, Suzuki H, Iwasa MA, Hayashida M, Watanabe S, Tatara M, Tsushiya K, 1999. Genetic relationships within and between the Japanese marten Martes melampus and the sable M. zibellina, based on variation of mitochondrial DNA and nuclear ribosomal DNA. Mammal Study, 24:25-33. https://doi.org/10.3106/mammalstudy.24.25
  29. Inoue T, Murakami T, Abramov AV, Masuda R, 2010. Mitochondrial DNA control region variations in the sable Martes zibellina of Hokkaido Island and the Eurasian continent, compared with the Japanese marten M. melampus. Mammal Study, 35:145-155. https://doi.org/10.3106/041.035.0301
  30. Isaac NJB, Turvey ST, Collen B, Waterman C, Baillie JEM, 2007. Mammals on the EDGE: conservation priorities based on threat and phylogeny. PLoS ONE, 2:e296. https://doi.org/10.1371/journal.pone.0000296
  31. Ishida K, Sato JJ, Kinoshita G, Hosoda T, Kryukov AP, Suzuki H, 2013. Evolutionary history of the sable (Martes zibellina brachyura) on Hokkaido inferred from mitochondrial Cytb and nuclear Mc1r and Tcf25 gene sequences. Acta Theriologica, 58:13-24. https://doi.org/10.1007/s13364-012-0103-z
  32. Kaneko Y, 2009. Meles anakuma Temminck, 1844. In: The wild mammals of Japan (Eds., Ohdachi SD, Ishibashi Y, Iwasa MA, Saitoh T). Shoukadoh, Kyoto, pp. 258-260.
  33. Kaneko Y, Maruyama N, Macdonald DW, 2006. Food habits and habitat selection of suburban badgers (Meles meles) in Japan. Journal of Zoology, 270:78-89.
  34. Kaneko Y, Shibuya M, Yamaguchi N, Fujii T, Okumura T, Matsubayashi K, Hioki Y, 2009. Diet of Japanese weasels (Mustela itatsi) in a sub-urban landscape: implications for year-round persistence of local populations. Mammal Study, 34:97-105. https://doi.org/10.3106/041.034.0205
  35. Kawamura Y, 1991. Quaternary mammalian faunas in the Japanese Islands. The Quaternary Research, 30:213-220. https://doi.org/10.4116/jaqua.30.213
  36. Kawamura Y, 1994. Late Pleistocene to Holocene mammalian faunal succession in the Japanese Islands, with comments on the Late Quaternary extinctions. Archaeozoologia, 6:7- 22.
  37. Kawamura Y, Kamei T, Taruno H, 1989. Middle and Late Pleistocene mammalian faunas in Japan. The Quaternary Research, 28:317-326 (in Japanese with English abstract). https://doi.org/10.4116/jaqua.28.317
  38. Kier G, Kreft H, Lee TM, Jetz W, Ibisch PL, Nowicki C, Mutke J, Barthlott W, 2009. A global assessment of endemism and species richness across island and mainland regions. Proceedings of the National Academy of Sciences of the United States of America, 106:9322-9327. https://doi.org/10.1073/pnas.0810306106
  39. King CM, 1989. The advantages and disadvantages of small size to weasels, Mustela species. In: Carnivore behavior, ecology, and evolution. Vol. 1 (Ed., Gittleman JL). Cornell University Press, New York, pp. 302-334.
  40. King CM, Moors PJ, 1979. On co-existence, foraging strategy and the biogeography of weasels and stoats (Mustela nivalis and M. erminea) in Britain. Oecologia, 39:129-150. https://doi.org/10.1007/BF00348064
  41. Koepfli KP, Deere KA, Slater GJ, Begg C, Begg K, Grassman L, Lucherini M, Veron G, Wayne RK, 2008. Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biology, 6:10. https://doi.org/10.1186/1741-7007-6-10
  42. Koh HS, Jang KH, Oh JG, Han ED, Jo JE, Ham EJ, Jeong SK, Lee JH, Kim KS, Kweon GH, In ST, 2012. Lack of mitochondrial DNA sequence divergence between two subspecies of the Siberian weasel from Korea: Mustela sibirica coreanus from the Korean Peninsula and M. s. quelpartis from Jeju Island. Animal Systematics, Evolution and Diversity, 28:133- 136. https://doi.org/10.5635/ASED.2012.28.2.133
  43. Koike S, Morimoto H, Goto Y, Kozakai C, Yamazaki K, 2012. Insectivory by five sympatric carnivores in cool-temperate deciduous forests. Mammal Study, 37:73-83. https://doi.org/10.3106/041.037.0208
  44. Kuroda N, 1955. The present status of the introduced mammals in Japan. The Journal of the Mammalogical Society of Japan, 1:13-18.
  45. Kuroda N, Mori T, 1923. Two new and rare mammals from Korea. Journal of Mammalogy, 4:27-28. https://doi.org/10.2307/1373526
  46. Kurose N, Abramov AV, Masuda R, 2005. Comparative phylogeography between the ermine Mustela erminea and the least weasel M. nivalis of Palaearctic and Nearctic regions, based on analysis of mitochondrial DNA control region sequences. Zoological Science, 22:1069-1078. https://doi.org/10.2108/zsj.22.1069
  47. Kurose N, Kaneko Y, Abramov AV, Siriaroonrat B, Masuda R, 2001. Low genetic diversity in Japanese populations of the Eurasian badger Meles meles (Mustelidae, Carnivora) revealed by mitochondrial cytochrome b gene sequences. Zoological Science, 18:1145-1151. https://doi.org/10.2108/zsj.18.1145
  48. Kurose N, Masuda R, Siriaroonrat B, Yoshida MC, 1999. Intraspecific variation of mitochondrial cytochrome b gene sequences of the Japanese marten Martes melampus and the Sable Martes zibellina (Mustelidae, Carnivora, Mammalia) in Japan. Zoological Science, 16:693-700. https://doi.org/10.2108/zsj.16.693
  49. Losos JB, 1996. Phylogenetic perspectives on community ecology. Ecology, 77:1344-1354. https://doi.org/10.2307/2265532
  50. Marmi J, Lopéz-Giráldez JF, Domingo-Roura X, 2004. Phylogeny, evolutionary history and taxonomy of the Mustelidae based on sequences of the cytochrome b gene and a complex repetitive flanking region. Zoologica Scripta, 33: 481-499. https://doi.org/10.1111/j.0300-3256.2004.00165.x
  51. Marmi J, Lopez-Giraldez F, Macdonald DW, Calafell F, Zholnerovskaya E, Domingo-Roura X, 2006. Mitochondrial DNA reveals a strong phylogeographic structure in the badger across Eurasia. Molecular Ecology, 15:1007-1020. https://doi.org/10.1111/j.1365-294X.2006.02747.x
  52. Martinoli A, Preatoni DG, Chiarenzi B, Wauters LA, Tosi G, 2001. Diet of stoats (Mustela erminea) in an Alpine habitat: the importance of fruit consumption in summer. Acta Oecologica, 22:45-53. https://doi.org/10.1016/S1146-609X(01)01102-X
  53. Masuda R, 2009a. Mustela erminea Linnaeus, 1758. In: The wild mammals of Japan (Eds., Ohdachi SD, Ishibashi Y, Iwasa MA, Saitoh T). Shoukadoh, Kyoto, pp. 246-247.
  54. Masuda R, 2009b. Mustela nivalis Linnaeus, 1766. In: The wild mammals of Japan (Eds., Ohdachi SD, Ishibashi Y, Iwasa MA, Saitoh T). Shoukadoh, Kyoto, pp. 244-245.
  55. Masuda R, Kurose N, Watanabe S, Abramov AV, Han SH, Lin LK, Oshida T, 2012. Molecular phylogeography of the Japanese weasel, Mustela itatsi (Carnivora: Mustelidae), endemic to the Japanese islands, revealed by mitochondrial DNA analysis. Biological Journal of the Linnean Society, 107:307-321. https://doi.org/10.1111/j.1095-8312.2012.01948.x
  56. Masuda R, Watanabe S, 2009. Mustela itatsi Temminck, 1844. In: The wild mammals of Japan (Eds., Ohdachi SD, Ishibashi Y, Iwasa MA, Saitoh T). Shoukadoh, Kyoto, pp. 240-241.
  57. Masuda R, Yoshida MC, 1994. A molecular phylogeny of the family Mustelidae (Mammalia, Carnivora), based on comparison of mitochondrial cytochrome b nucleotide sequences. Zoological Science, 11:605-612.
  58. McDonald RA, Webbon C, Harris S, 2000. The diet of stoats (Mustela erminea) and weasels (Mustela nivalis) in Great Britain. Journal of Zoology, 252:363-371. https://doi.org/10.1111/j.1469-7998.2000.tb00631.x
  59. McKay BD, 2012. A new timeframe for the diversification of Japan's mammals. Journal of Biogeography, 39:1134-1143. https://doi.org/10.1111/j.1365-2699.2011.02666.x
  60. Millien V, 2006. Morphological evolution is accelerated among island mammals. PLoS Biology, 4:e321 https://doi.org/10.1371/journal.pbio.0040321
  61. Millien-Parra V, Jaeger JJ, 1999. Island biogeography of the Japanese terrestrial mammal assemblages: an example of a relict fauna. Journal of Biogeography, 26:959-972. https://doi.org/10.1046/j.1365-2699.1999.00346.x
  62. Monakhov VG, 2011. Martes zibellina (Carnivora: Mustelidae). Mammalian Species, 43:75-86. https://doi.org/10.1644/876.1
  63. Morse DH, 1974. Niche breadth as a function of social dominance. The American Naturalist, 108:818-830. https://doi.org/10.1086/282957
  64. Murakami T, 2003. Food habits of the Japanese sable Martes zibellina brachyura in eastern Hokkaido, Japan. Mammal Study, 28:129-134. https://doi.org/10.3106/mammalstudy.28.129
  65. Murakami T, 2009. Martes zibellina (Linnaeus, 1758). In: The wild mammals of Japan (Eds., Ohdachi SD, Ishibashi Y, Iwasa MA, Saitoh T). Shoukadoh, Kyoto, pp. 252-253.
  66. Nakamura T, Kanzaki N, Maruyama N, 2001. Seasonal changes in food habits of Japanese martens in Hinode-cho and Akiruno- shi, Tokyo. Wildlife Conservation Japan, 6:15-24 (in Japanese).
  67. Nowak RM, 1999. Walker's mammals of the world. Vol. 1. 6th ed. The Johns Hopkins University Press, Baltimore, MD, pp. 1-1936.
  68. Obara Y, 1991. Karyosystematics of the mustelid carnivores of Japan. Mammalian Science, 30:197-220.
  69. Ogino S, Otsuka H, Harunari H, 2009. The middle Pleistocene Matsugae fauna, northern Kyushu, West Japan. Paleontological Research, 13:367-384. https://doi.org/10.2517/1342-8144-13.4.367
  70. Ohdachi SD, Ishibashi Y, Iwasa MA, Saitoh T, 2009. The wild mammals of Japan. Shoukadoh, Kyoto, pp. 1-544.
  71. Ohshima K, 1990. The history of straits around the Japanese Islands in the Late-Quaternary. The Quaternary Research, 29:193-208 (in Japanese with English abstract). https://doi.org/10.4116/jaqua.29.193
  72. Ohtsu M, 1971. Food habits of the Japanese weasel in winter and its conservation. Journal of Japanese Society of Applied Entomology and Zoology, 15:87-88 (in Japanese). https://doi.org/10.1303/jjaez.15.87
  73. Otani T, 2002. Seed dispersal by Japanese marten Martes melampus in the subalpine shrubland of northern Japan. Ecological Research, 17:29-38. https://doi.org/10.1046/j.1440-1703.2002.00460.x
  74. Piechnik DA, Lawler SP, Martinez ND, 2008. Food-web assembly during a classic biogeographic study: species' "trophic breadth" corresponds to colonization order. Oikos, 117:665- 674. https://doi.org/10.1111/j.0030-1299.2008.15915.x
  75. Ricketts TH, Dinerstein E, Boucher T, Brooks TM, Butchart SHM, Hoffmann M, Lamoreux JF, Morrison J, Parr M, Pilgrim JD, Rodrigues ASL, Sechrest W, Wallace GE, Berlin K, Bielby J, Burgess ND, Church DR, Cox N, Knox D, Loucks C, Luck GW, Master LL, Moore R, Naidoo R, Ridgely R, Schatz GE, Shire G, Strand H, Wettengel W, Wikramanayake E, 2005. Pinpointing and preventing imminent extinctions. Proceedings of the National Academy of Sciences of the United States of America, 102:18497-18501. https://doi.org/10.1073/pnas.0509060102
  76. Roper TJ, 1994. The European badger Meles meles: food specialist or generalist? Journal of Zoology, London, 234:437-452. https://doi.org/10.1111/j.1469-7998.1994.tb04858.x
  77. Ryder OA, 1986. Species conservation and systematics: the dilemma of subspecies. Trends in Ecology and Evolution, 1:9-10. https://doi.org/10.1016/0169-5347(86)90059-5
  78. Sasaki H, 2009a. Mustela sibirica Pallas, 1773. In: The wild mammals of Japan (Eds., Ohdachi SD, Ishibashi Y, Iwasa MA, Saitoh T). Shoukadoh, Kyoto, pp. 242-243.
  79. Sasaki H, 2009b. Lutra lutra (Linnaeus, 1758). In: The wild mammals of Japan (Eds., Ohdachi SD, Ishibashi Y, Iwasa MA, Saitoh T). Shoukadoh, Kyoto, pp. 254-255.
  80. Sasaki H, Ono Y, 1994. Habitat use and selection of the Siberian weasel Mustela sibirica coreana during the non-mating season. Journal of the Mammalogical Society of Japan, 19:21-32.
  81. Sato JJ, Hosoda T, Kryukov AP, Kartavtseva IV, Suzuki H, 2011. Genetic diversity of the sable (Martes zibellina, Mustelidae) in Russian Far East and Hokkaido inferred from mitochondrial NADH dehydrogenase subunit 2 gene sequences. Mammal Study, 36:209-222. https://doi.org/10.3106/041.036.0404
  82. Sato JJ, Hosoda T, Wolsan M, Suzuki H, 2004. Molecular phylogeny of arctoids (Mammalia; Carnivora) with emphasis on phylogenetic and taxonomic positions of the ferret-badgers and skunks. Zoological Science, 21:111-118. https://doi.org/10.2108/0289-0003(2004)21[111:MPOAMC]2.0.CO;2
  83. Sato JJ, Hosoda T, Wolsan M, Tsuchiya K, Yamamoto Y, Suzuki H, 2003. Phylogenetic relationships and divergence time among mustelids (Mammalia; Carnivora) based on nucleotide sequences of the nuclear interphotoreceptor retinoid binding protein and mitochondrial cytochrome b genes. Zoological Science, 20:243-264. https://doi.org/10.2108/zsj.20.243
  84. Sato JJ, Wolsan M, Minami S, Hosoda T, Sinaga MH, Hiyama K, Yamaguchi Y, Suzuki H, 2009a. Deciphering and dating the red panda's ancestry and early adaptive radiation of Musteloidea. Molecular Phylogenetics and Evolution, 53: 907-922. https://doi.org/10.1016/j.ympev.2009.08.019
  85. Sato JJ, Wolsan M, Prevosti FJ, D'Eelia G, Begg C, Begg K, Hosoda T, Campbell KL, Suzuki H, 2012. Evolutionary and biogeographic history of weasel-like carnivorans (Musteloidea). Molecular Phylogenetics and Evolution, 63:745-757. https://doi.org/10.1016/j.ympev.2012.02.025
  86. Sato JJ, Wolsan M, Suzuki H, Hosoda T, Yamaguchi Y, Hiyama K, Kobayashi M, Minami S, 2006. Evidence from nuclear DNA sequences shed light on the phylogenetic relationships of Pinnipedia: single origin with affinity to Musteloidea. Zoological Science, 23:125-146. https://doi.org/10.2108/zsj.23.125
  87. Sato JJ, Yasuda SP, Hosoda T, 2009b. Genetic diversity of the Japanese marten (Martes melampus) and its implications for the conservation unit. Zoological Science, 26:457-466. https://doi.org/10.2108/zsj.26.457
  88. Sekiguchi K, Ogura G, Sasaki T, Nagayama Y, Tsuha K, Kawashima Y, 2002. Food habits of introduced Japanese weasels (Mustela itatsi) and impacts on native species on Zamami Island. Mammalian Science, 42:153-160 (in Japanese).
  89. Shiratsuki N, 1972. On the feces of the Japanese marten. Nature Study, 18:98-101 (in Japanese).
  90. Suzuki H, 2009. A molecular phylogenetic view of mammals in the "three-story museum" of Hokkaido, Honshu, and Ryukyu Islands, Japan. In: The wild mammals of Japan (Eds., Ohdachi SD, Ishibashi Y, Iwasa MA, Saitoh T). Shoukadoh, Kyoto, pp. 261-263.
  91. Suzuki S, Abe M, Motokawa M, 2011. Allometric comparison of skulls from two closely related weasels, Mustela itatsi and M. sibirica. Zoological Science, 28:676-688. https://doi.org/10.2108/zsj.28.676
  92. Suzuki S, Miyao T, Nishizawa T, Shida Y, Takada Y, 1976. Studies on mammals of the Mt. Koso-Komagatake, central Japan Alps. II. Food habit of the Japanese marten in autumn and winter in upper part of low mountainous zone on eastern slope of the Kiso-Komagatake, with special reference to the scat analysis. Journal of the Faculty of Agriculture Shinshu University, 13:21-42 (in Japanese).
  93. Suzuki S, Miyao T, Nishizawa T, Takada Y, 1977. Studies on mammals of the Mt. Koso-Komagatake, central Japan Alps. III. Food habit of the Japanese marten in upper part of low mountainous zone and sub-alpine zone of the Kiso-Komagatake. Journal of the Faculty of Agriculture Shinshu University, 14:147-178 (in Japanese).
  94. Tajima F, 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123:585-595.
  95. Tamada T, Siriaroonrat B, Subramaniam V, Hamachi M, Lin LK, Oshida T, Rerkamnuaychoke W, Masuda R, 2008. Molecular diversity and phylogeography of the Asian leopard cat, Felis bengalensis, inferred from mitochondrial and Y-chromosomal DNA sequences. Zoological Science, 25:154-163. https://doi.org/10.2108/zsj.25.154
  96. Tashima S, Kaneko Y, Anezaki T, Baba M, Yachimori S, Abramov AV, Saveljev AP, Masuda R, 2011. Phylogeographic sympatry and isolation of the Eurasian badgers (Meles, Mustelidae, Carnivora): implications for an alternative analysis using maternally as well as paternally inherited genes. Zoological Science, 28:293-303. https://doi.org/10.2108/zsj.28.293
  97. Tatara M, Doi T, 1994. Comparative analyses on food habits of Japanese marten, Siberian weasel and leopard cat in the Tsushima islands, Japan. Ecological Research, 9:99-107. https://doi.org/10.1007/BF02347247
  98. Tsuji Y, Tatewaki T, Kanda E, 2011. Endozoochorous seed dispersal by sympatric mustelids, Martes melampus and Mustela itatsi, in western Tokyo, central Japan. Mammalian Biology, 76:628-633. https://doi.org/10.1016/j.mambio.2011.01.002
  99. Uchida T, 1969. Rat-control procedures on the Pacific islands, with special reference to the efficiency of biological control agents. II: Efficiency of the Japanese weasel, Mustela sibirica itatsi Temminck & Schlegel, as a rat-control agent in the Ryukyus. Journal of the Faculty of Agriculture, Kyushu University, 15:355-385.
  100. Ueuma Y, Tokuno C, 2001. Droppings of red fox (Vulpes vulpes japonica), Japanese marten (Martes melampus melampus), and Hondo stoat (Mustela erminea nippon) on the alpine trails in Mt. Hakusan. Research Reports of Hakusan Nature Conservation Center in Ishikawa Prefecture, 28:7-11 (in Japanese).
  101. Ueuma Y, Tokuno C, 2002. Droppings of red fox (Vulpes vulpes japonica), Japanese marten (Martes melampus melampus), and Hondo stoat (Mustela erminea nippon) on the alpine trails in Mt. Hakusan in 2002. Research Reports of Hakusan Nature Conservation Center in Ishikawa Prefecture, 29:55-58 (in Japanese).
  102. Ueuma Y, Tokuno C, Tsuji M, 2005. Food of red fox (Vulpes vulpes japonica), Japanese marten (Martes melampus melampus), and Hondo stoat (Mustela erminea nippon) analysed by dropping contents on the trails in Mt. Hakusan. Research Reports of Hakusan Nature Conservation Center in Ishikawa Prefecture, 32:31-36 (in Japanese).
  103. Uraguchi K, 2009. Neovison vison (Schreber, 1777). In: The wild mammals of Japan (Eds., Ohdachi SD, Ishibashi Y, Iwasa MA, Saitoh T). Shoukadoh, Kyoto, pp. 248-249.
  104. Virgos E, Mangas J, Blanco-Aguiar JA, Garrote G, Almagro N, Viso RP, 2004. Food habits of European badgers (Meles meles) along an altitudinal gradient of Mediterranean environments: a field test of the earthworm specialization hypothesis. Canadian Journal of Zoology, 82:41-51. https://doi.org/10.1139/z03-205
  105. Vitt LJ, Pianka ER, 2005. Deep history impacts present-day ecology and biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 102:7877-7881. https://doi.org/10.1073/pnas.0501104102
  106. Wiens JJ, Donoghue MJ, 2004. Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19:639-644. https://doi.org/10.1016/j.tree.2004.09.011
  107. Wiens JJ, Graham CH, 2005. Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution, and Systematics, 36:519-539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431
  108. Webb CO, Ackerly DD, McPeek MA, Donoghue MJ, 2002. Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33:475-505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448
  109. Wolsan M, 2013. Family Mustelidae: weasels, polecats, otters, Ratel and allies. In: Mammals of Africa. Vol. 5. Carnivores, pangolins, equids and rhinoceroses (Eds., Kingdon J, Hoffmann M). Bloomsbury Publishing, London, pp. 82-84.
  110. Wolsan M, Sato JJ, 2010. Effects of data incompleteness on the relative performance of parsimony and Bayesian approaches in a supermatrix phylogenetic reconstruction of Mustelidae and Procyonidae (Carnivora). Cladistics, 26:168-194. https://doi.org/10.1111/j.1096-0031.2009.00281.x
  111. Wozencraft WC, 1993. Order Carnivora. In: Mammal species of the world: a taxonomic and geographic reference. 2nd ed (Eds., Wilson DE, Reeder DM). Smithsonian Institute Press, Washington, pp. 279-348.
  112. Wozencraft WC, 2005. Order Carnivora. In: Mammal species of the world: a taxonomic and geographic reference. 3rd ed (Eds., Wilson DE, Reeder DM). Johns Hopkins University Press, Baltimore, MD, pp. 532-628.
  113. Wu HY, 1999. Is there current competition between sympatric Siberian weasels (Mustela sibirica) and ferret badgers (Melogale moschata) in a subtropical forest ecosystem of Taiwan? Zoological Studies, 38:443-451.
  114. Yamagishi M, 1990. Seasonal food habits of the Japanese marten. Bulletin of the Tokyo University Forests, 83:9-18 (in Japanese with English abstract).
  115. Yamamoto Y, 1991. Food habits of the Japanese badger (Meles meles anakuma) in Mt. Nyugasa, Nagano Prefecture, Japan. The Natural Environmental Science Research, 4:73-83 (in Japanese).
  116. Yamamoto Y, 1994. Comparative analyses on food habits of Japanese marten, red fox, badger and raccoon dog in Mt. Nyugasa, Nagano Prefecture, Japan. The Natural Environmental Science Research, 7:45-52 (in Japanese).
  117. Yukawa M, 1968a. Notes on some ecology and measurements of Mustela sibirica coreana Domaniewski. The Journal of the Mammalogical Society of Japan, 4:58-59 (in Japanese).
  118. Yukawa M, 1968b. On the food habit of the Japanese weasel (Mustela sibirica itatsi Temminck) in northern parts of Hiroshima Pref. Hiwa Science Museum Report, 12:7-10 (in Japanese).
  119. Zhou YB, Newman C, Xu WT, Buesching CD, Zalewski A, Kaneko Y, Macdonald DW, Xie ZQ, 2011. Biogeographical variation in the diet of Holarctic martens (genus Martes, Mammalia: Carnivora: Mustelidae): adaptive foraging in generalists. Journal of Biogeography, 38:137-147. https://doi.org/10.1111/j.1365-2699.2010.02396.x

Cited by

  1. (Mammalia, Carnivora) on the marginal peninsula and islands of northeastern Eurasia vol.96, pp.1, 2015, https://doi.org/10.1093/jmammal/gyu021
  2. Biogeography of Korea’s top predator, the yellow-throated Marten: evolutionary history and population dynamics vol.19, pp.1, 2019, https://doi.org/10.1186/s12862-019-1347-x