DOI QR코드

DOI QR Code

Targeting Cellular Antioxidant Enzymes for Treating Atherosclerotic Vascular Disease

  • Kang, Dong Hoon ;
  • Kang, Sang Won
  • Received : 2013.02.06
  • Accepted : 2013.03.12
  • Published : 2013.03.31

Abstract

Atherosclerotic vascular dysfunction is a chronic inflammatory process that spreads from the fatty streak and foam cells through lesion progression. Therefore, its early diagnosis and prevention is unfeasible. Reactive oxygen species (ROS) play important roles in the pathogenesis of atherosclerotic vascular disease. Intracellular redox status is tightly regulated by oxidant and antioxidant systems. Imbalance in these systems causes oxidative or reductive stress which triggers cellular damage or aberrant signaling, and leads to dysregulation. Paradoxically, large clinical trials have shown that non-specific ROS scavenging by antioxidant vitamins is ineffective or sometimes harmful. ROS production can be locally regulated by cellular antioxidant enzymes, such as superoxide dismutases, catalase, glutathione peroxidases and peroxiredoxins. Therapeutic approach targeting these antioxidant enzymes might prove beneficial for prevention of ROS-related atherosclerotic vascular disease. Conversely, the development of specific antioxidant enzyme-mimetics could contribute to the clinical effectiveness.

Keywords

Vascular disease;Atherosclerosis;Reactive oxygen species;Antioxidant enzymes;Antioxidant therapeutics

References

  1. Toppo, S., Flohe, L., Ursini, F., Vanin, S. and Maiorino, M. (2009) Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim. Biophys. Acta 1790, 1486-1500. https://doi.org/10.1016/j.bbagen.2009.04.007
  2. Traber, M. G. and Atkinson, J. (2007) Vitamin E, antioxidant and nothing more. Free. Radic. Biol. Med. 43, 4-15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024
  3. van Deel, E. D., Lu, Z., Xu, X., Zhu, G., Hu, X., Oury, T. D., Bache, R. J., Duncker, D. J., Chen, Y. (2008) Extracellular superoxide dismutase protects the heart against oxidative stress and hypertrophy after myocardial infarction. Free Radic. Biol. Med. 44, 1305-1313. https://doi.org/10.1016/j.freeradbiomed.2007.12.007
  4. van Empel. V. P., Bertrand, A. T., van Oort. R. J., van der, Nagel R., Engelen, M., van Rijen, H. V., Doevendans, P. A., Crijns, H. J., Ackerman, S. L., Sluiter, W. and De Windt, L. J. (2006) EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant. J. Am. Coll. Cardiol. 48, 824-832. https://doi.org/10.1016/j.jacc.2006.02.075
  5. Vernet, P., Rock, E., Mazur, A., Rayssiguier, Y., Dufaure, J. P. and Drevet, J. R. (1999) Selenium-independent epididymis-restricted glutathione peroxidase 5 protein (GPx5) can back up failing Se-dependent Gpxs in mice subjected to selenium deficiency. Mol. Reprod. Dev. 54, 362-370. https://doi.org/10.1002/(SICI)1098-2795(199912)54:4<362::AID-MRD6>3.0.CO;2-#
  6. Watts, G. F. and Staels, B. (2004) Regulation of endothelial nitric oxide synthase by PPAR agonists: molecular and clinical perspectives. Arterioscler. Thromb. Vasc. Biol. 24, 619-621. https://doi.org/10.1161/01.ATV.0000125706.86492.69
  7. Wei, Y., Liu, X. M., Peyton, K. J., Wang, H., Johnson, F. K., Johnson, R. A. and Durante, W. (2009) Hypochlorous acid-induced heme oxygenase-1 gene expression promotes human endothelial cell survival. Am. J. Physiol. Cell Physiol. 297, C907-915. https://doi.org/10.1152/ajpcell.00536.2008
  8. Wood, Z. A., Schroder, E., Robin Harris, J. and Poole, L. B. (2003) Structure, mechanism and regulation of peroxiredoxins. Trends. Biochem. Sci. 28, 32-40. https://doi.org/10.1016/S0968-0004(02)00003-8
  9. Yan, W. and Chen, X. (2006) GPX2, a direct target of p63, inhibits oxidative stress-induced apoptosis in a p53-dependent manner. J. Biol. Chem. 281, 7856-7862. https://doi.org/10.1074/jbc.M512655200
  10. Yang, H., Roberts, L. J., Shi, M. J., Zhou, L. C., Ballard, B. R., Richardson, A. and Guo, Z. M. (2004) Retardation of atherosclerosis by overexpression of catalase or both Cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E. Circ. Res. 95, 1075-1081. https://doi.org/10.1161/01.RES.0000149564.49410.0d
  11. Zhang, F., Strom, A., Fukada, K., Lee, S., Hayward, L. J. and Zhu, H. (2007) Interaction between Familial Amyotrophic Lateral Sclerosis (ALS)-linked SOD1 Mutants and the Dynein Complex. J. Biol. Chem. 282, 16691-16699. https://doi.org/10.1074/jbc.M609743200
  12. Stocker, R. and Keaney, J. F. Jr. (2004) Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84, 1381-1478. https://doi.org/10.1152/physrev.00047.2003
  13. Suh, Y. A., Arnold, R. S., Lassegue, B., Shi, J., Xu, X., Sorescu, D., Chung, A. B., Griendling, K. K. and Lambeth, J. D. (1999) Cell transformation by the superoxide-generating oxidase Mox1. Nature 401, 79-82. https://doi.org/10.1038/43459
  14. Nishikawa, M., Tamada, A., Kumai, H., Yamashita, F. and Hashida, M. (2002) Inhibition of experimental pulmonary metastasis by controlling biodistribution of catalase in mice. Int. J. Cancer 99, 474-479. https://doi.org/10.1002/ijc.10387
  15. Ohara, Y., Peterson, T. E. and Harrison, D. G. (1993) Hypercholesterolemia increases endothelial superoxide anion production. J. Clin. Invest. 91, 2546-2551. https://doi.org/10.1172/JCI116491
  16. Olson, G. E., Whitin, J. C., Hill, K. E., Winfrey, V. P., Motley, A.K., Austin, L. M., Deal, J., Cohen, H. J. and Burk, R. F. (2010) Extracellular glutathione peroxidase(Gpx3) binds specifically to basement membranes of mouse renal cortex tubule cells. Am. J. Physiol. Renal Physiol. 298, F1244-1253. https://doi.org/10.1152/ajprenal.00662.2009
  17. Park, J. G., Yoo, J. Y., Jeong, S. J., Choi, J. H., Lee, M. R., Lee, M. N., Hwa, L. J., Kim, H. C., Jo, H., Yu, D. Y., Kang, S. W., Rhee, S. G., Lee, M. H. and Oh, G. T. (2011) Peroxiredoxin 2 deficiency exacerbates atherosclerosis in apolipoprotein E-deficient mice. Circ. Res. 109, 739-749. https://doi.org/10.1161/CIRCRESAHA.111.245530
  18. Rajagopalan, S., Kurz, S., Munzel, T., Tarpey, M., Freeman, B. A., Griendling, K. K. and Harrison, D. G. (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 97, 1916-1923. https://doi.org/10.1172/JCI118623
  19. Reddi, A. R., Jensen, L. T., Naranuntarat, A., Rosenfeld, L., Leung, E., Shah, R. and Culotta, V. C. (2009) The overlapping roles of manganese and Cu/Zn SOD in oxidative stress protection. Free Radic. Biol. Med. 46, 154-162. https://doi.org/10.1016/j.freeradbiomed.2008.09.032
  20. Rhee, S. G., Woo, H. A., Kil, I. S. and Bae, S. H. (2012) Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J. Biol. Chem. 287, 4403-4410. https://doi.org/10.1074/jbc.R111.283432
  21. Ryter, S. W., Alam, J. and Choi, A. M. (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86, 583-650. https://doi.org/10.1152/physrev.00011.2005
  22. Safo, M. K., Musayev, F. N., Wu, S. H., Abraham, D. J. and Ko, T. P. (2001) Structure of tetragonal crystals of human erythrocyte catalase. Acta Crystallogr. D. Biol. Crystallogr. 57, 1-7.
  23. Sauer, H., Shah, A. M. and Laurindo, F. R. M. (2010) Studies on Cardiovascular Disorders, Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, New York.
  24. Sauer, H., Wartenberg, M. and Hescheler, J. (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell. Physiol. Biochem. 11, 173-186. https://doi.org/10.1159/000047804
  25. Sentman, M. L., Brannstrom, T., Westerlund, S., Laukkanen, M. O., Yla-Herttuala, S., Basu, S. and Marklund, S. L. (2001) Extracellular superoxide dismutase deficiency and atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 21, 1477-1482. https://doi.org/10.1161/hq0901.094248
  26. Sorescu, D., Weiss, D., Lassegue, B., Clempus, R. E., Szocs, K., Sorescu, G. P., Valppu, L., Quinn, M. T., Lambeth, J. D., Vega, J. D., Taylor, W. R. and Griendling, K. K. (2002) Superoxide production and expression of nox family proteins in human atherosclerosis. Circulation 105, 1429-1435. https://doi.org/10.1161/01.CIR.0000012917.74432.66
  27. Lassegue, B., Sorescu, D., Szocs, K., Yin, Q., Akers, M., Zhang, Y., Grant, S. L., Lambeth, J. D. and Griendling, K. K. (2001) Novel gp91(phox) homologues in vascular smooth muscle cells : nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ. Res. 88, 888-894. https://doi.org/10.1161/hh0901.090299
  28. Laukkanen, M. O., Leppanen, P., Turunen, P., Pokkala-Sarataho, E., Salonen, J. T. and Yla-Herttulala, S. (2001) Gene transfer of extracellular superoxide dismutase to atherosclerotic mice. Antioxid. Redox Signal. 3, 397-402. https://doi.org/10.1089/15230860152409040
  29. Lee, M. Y., Martin, A. S., Mehta, P. K., Dikalova, A. E., Garrido, A. M., Datla, S. R., Lyons E., Krause, K., Banfi, B., Lambeth J. D., Lassegue, B. and Griendling K. K. (2009) Mechanism of vascular smooth muscle NADPH Oxidase 1 contribution to injury-induced neointimal formation. Arterioscler. Thromb. Vasc. Biol. 29, 480-487. https://doi.org/10.1161/ATVBAHA.108.181925
  30. Li, C., Hossieny, P., Wu, B. J., Qawasmeh, A., Beck, K. and Stocker, R. (2007) Pharmacologic induction of heme oxygenase-1. Antioxid. Redox Signal. 9, 2227-2239. https://doi.org/10.1089/ars.2007.1783
  31. Mayr, M., Chung, Y. L., Mayr, U., Yin, X., Ly, L., Troy, H., Fredericks, S., Hu, Y., Griffiths, J. R. and Xu, Q. (2005) Proteomic and metabolomic analyses of atherosclerotic vessels from apolipoprotein E-deficient mice reveal alterations in inflammation, oxidative stress, and energy metabolism. Arterioscler. Thromb. Vasc. Biol. 25, 2135-2142. https://doi.org/10.1161/01.ATV.0000183928.25844.f6
  32. McCord, J. M. (2004) Therapeutic control of free radicals. Drug Discov. Today 9, 781-782. https://doi.org/10.1016/S1359-6446(04)03211-8
  33. Milenkovic, M., De Deken, X., Jin, L., De Felice, M., Di Lauro, R., Dumont, J. E., Corvilain, B. and Miot, F. (2007) Duox expression and related $H_2O_2$ measurement in mouse thyroid: onset in embryonic development and regulation by TSH in adult. J. Endocrinol. 192, 615-626. https://doi.org/10.1677/JOE-06-0003
  34. Musset, B., Clark, R. A., DeCoursey, T. E., Petheo, G. L., Geiszt, M., Chen, Y., Cornell, J. E., Eddy, C. A., Brzyski, R. G. and El Jamali, A. (2012) NOX5 in human spermatozoa expression, function, and regulation. J. Biol. Chem. 287, 9376-9388. https://doi.org/10.1074/jbc.M111.314955
  35. Nguyen, V. D., Saaranen, M. J., Karala, A., Lappi, A., Wang, L., Raykhel, I. B., Alanen, H. I, Salo, K., Wang, C. and Ruddock, L. W. (2011) Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bind formation. J. Mol. Biol. 406, 503-515. https://doi.org/10.1016/j.jmb.2010.12.039
  36. Nishikawa, M., Hashida, M. and Takakura, Y. (2009) Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv. Drug Deliv. Rev. 61, 319-326. https://doi.org/10.1016/j.addr.2009.01.001
  37. Forgione, M. A., Weiss, N., Heydrick, S., Cap, A., Klings, E. S., Bierl, C., Eberhardt, R. T., Farber, H. W. and Loscalzo, J. (2002) Cellular glutathione peroxidase deficiency and endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 282, H1255-1261. https://doi.org/10.1152/ajpheart.00598.2001
  38. Fukai, T., Galis, Z. S., Meng, X. P., Parthasarathy, S. and Harrison, D. G. (1998) Vascular expression of extracellular superoxide dismutase in atherosclerosis. J. Clin. Invest. 101, 2101-2111. https://doi.org/10.1172/JCI2105
  39. Gozzelino, R., Jeney, V. and Soares, M. P. (2010) Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323-354. https://doi.org/10.1146/annurev.pharmtox.010909.105600
  40. Griendling, K. K. (2005). ATVB in focus: redox mechanisms in blood vessels. Arterioscler. Thromb. Vasc. Biol. 25, 272-273.
  41. Guo, X., Yamada, S., Tanimoto, A., Ding, Y., Wang, K. Y., Shimajiri, S., Murata, Y., Kimura, S., Tasaki, T., Nabeshima, A., Watanabe, T., Kohno, K. and Sasaguri, Y. (2012) Overexpression of peroxiredoxin 4 attenuates atherosclerosis in apolipoprotein E knockout mice. Antioxid. Redox Signal. 17, 1362-1375. https://doi.org/10.1089/ars.2012.4549
  42. Guzik, T. J., Sadowski, J., Guzik, B., Jopek, A., Kapelak, B., Przybylowski, P., Wierzbicki, K., Korbut, R., Harrison, D. G. and Channon, K. M. (2006) Coronary artery superoxide production and nox isoform expression in human coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 26, 333-339.
  43. Imai, H. and Nakagawa, Y. (2003) Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Free Radic. Biol. Med. 34, 145-169. https://doi.org/10.1016/S0891-5849(02)01197-8
  44. Kang, S. W., Rhee, S. G., Chang, T. S., Jeong, W. and Choi, M. H. (2005) 2-Cys peroxiredoxin function in intracellular signal transduction: therapeutic implications. Trends. Mol. Med. 11, 571-578. https://doi.org/10.1016/j.molmed.2005.10.006
  45. Kisucka, J., Chauhan, A. K., Patten, I. S., Yesilaltay, A., Neumann, C., Van Etten, R. A., Krieger, M. and Wagner, D. D. (2008) Peroxiredoxin1 prevents excessive endothelial activation and early atherosclerosis. Circ. Res. 103, 598-605. https://doi.org/10.1161/CIRCRESAHA.108.174870
  46. Kokoszka, J. E., Coskun, P., Esposito, L. A. and Wallace, D. C. (2001) Increased mitochondrial oxidative stress in the Sod2(+/-) mouse results in the age-related decline of mitochondrial function culminating in increased apoptosis. Proc. Natl. Acad. Sci. U.S.A. 98, 2278-2283. https://doi.org/10.1073/pnas.051627098
  47. Lambeth, J. D. (2004) NOX enzymes and the biology of reactive oxygen. Nat. Rev. Immunol. 4, 181-189. https://doi.org/10.1038/nri1312
  48. Landmesser, U., Cai, H., Dikalov, S., McCann, L., Hwang, J., Jo, H., Holland, S. M. and Harrison, D. G. (2002) Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II. Hypertension 40, 511-515. https://doi.org/10.1161/01.HYP.0000032100.23772.98
  49. Landmesser, U., Dikalov, S., Price, S. R., McCann, L., Fukai, T., Holland, S. M., Mitch, W. E. and Harrison, D. G. (2003) Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest. 111, 1201-1209. https://doi.org/10.1172/JCI200314172
  50. Alp, N. J. and Channon, K. M. (2004) Regulation of endothelial nitric oxide synthase by tetrahydrobiopterin in vascular disease. Arterioscler. Thromb. Vasc. Biol. 24, 413-420. https://doi.org/10.1161/01.ATV.0000110785.96039.f6
  51. Bedard, K. and Krause, K. H. (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245-313. https://doi.org/10.1152/physrev.00044.2005
  52. Blankenberg, S., Rupprecht, H. J., Bickel, C., Torzewski, M., Hafner, G., Tiret, L., Smieja, M., Cambien, F., Meyer, J. and Lackner, K. J. (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N. Engl. J. Med. 349, 1605-1613. https://doi.org/10.1056/NEJMoa030535
  53. Bliznakov, E. G. (1999) Cardiovascular diseases, oxidative stress and antioxidants: the decisive role of coenzyme Q10. Cardiovasc. Res. 43, 248-249. https://doi.org/10.1016/S0008-6363(99)00128-5
  54. Chang, T., Cho, C. Park, S., Yu, S. and Kang, S. W. (2004) Peroxiredoxin III, amitochindrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J. Biol. Chem. 279, 41975-41984. https://doi.org/10.1074/jbc.M407707200
  55. Chen, H., Yu, M., Li, M., Zhao, R., Zhu, Q., Zhou, W., Lu, M., Lu, Y., Zheng, T., Jiang, J., Zhao, W., Xiang, K., Jia, W. and Liu, L. (2012) Polymorphic variations in manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPX1), and catalase (CAT) contribute to elevated plasma triglyceride levels in Chinese patients with type 2 diabetes or diabetic cardiovascular disease. Mol. Cell Biochem. 363, 85-91. https://doi.org/10.1007/s11010-011-1160-3
  56. Choi, H. J., Kang, S. W., Yang, C. H., Rhee, S. G. and Ryu, S. E. (1998) Crystal structure of a novel human peroxidase enzyme at 2.0 A resolution. Nat. Struct. Biol. 5, 400-406. https://doi.org/10.1038/nsb0598-400
  57. Choi, M. H., Lee, I. K., Kim, G. W., Kim, B. U., Han, Y. H., Yu, D. Y., Park, H. S., Kim, K. Y., Lee, J. S., Choi, C., Bae, Y. S., Lee, B. I., Rhee, S. G. and Kang, S. W. (2005) Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435, 347-353. https://doi.org/10.1038/nature03587
  58. Chu, F. F., Esworthy, R. S., Chu, P. G., Longmate, J. A., Huycke, M. M., Wilczynski, S. and Doroshow, J. H. (2004) Bacteria-induced intestinal cancer in mice with disrupted gpx1 and gpx2 genes. Cancer Res. 64, 962-968. https://doi.org/10.1158/0008-5472.CAN-03-2272
  59. Chu, Y., Iida, S., Lund, D. D., Weiss, R. M., DiBona, G. F., Watanabe, Y., Faraci, F. M. and Heistad, D. D. (2003) Gene transfer of extracellular superoxide dismutase reduces arterial pressure in spontaneously hypertensive rats: role of heparin-binding domain. Circ. Res. 92, 461-468. https://doi.org/10.1161/01.RES.0000057755.02845.F9
  60. Day, B. J. (2004). Catalytic antioxidants: a radical approach to new therapeutics. Drug Discov. Today 9, 557-566. https://doi.org/10.1016/S1359-6446(04)03139-3
  61. Abreu, I. A. and Cabelli, D. E. (2010) Superoxide dismutases-a review of the metal-associated mechanistic variations. Biochim. Biophys. Acta 1804, 263-274. https://doi.org/10.1016/j.bbapap.2009.11.005

Cited by

  1. Characteristics of Skeletal Muscle Fibers of SOD1 Knockout Mice vol.2016, 2016, https://doi.org/10.1155/2016/9345970
  2. Novel carters and targeted approaches: Way out for rheumatoid arthritis quandrum vol.40, 2017, https://doi.org/10.1016/j.jddst.2017.05.025
  3. Anti-inflammatory activity of AP-SF, a ginsenoside-enriched fraction, from Korean ginseng vol.39, pp.2, 2015, https://doi.org/10.1016/j.jgr.2014.10.004
  4. Skeletal Muscle TRIB3 Mediates Glucose Toxicity in Diabetes and High- Fat Diet–Induced Insulin Resistance vol.65, pp.8, 2016, https://doi.org/10.2337/db16-0154
  5. The protective effects of trace elements against side effects induced by ionizing radiation vol.33, pp.2, 2015, https://doi.org/10.3857/roj.2015.33.2.66
  6. Novel anti-inflammatory function of NSC95397 by the suppression of multiple kinases vol.88, pp.2, 2014, https://doi.org/10.1016/j.bcp.2014.01.022
  7. Syk/Src-targeted anti-inflammatory activity of Codariocalyx motorius ethanolic extract vol.155, pp.1, 2014, https://doi.org/10.1016/j.jep.2014.05.013
  8. ATF-2/CREB/IRF-3-targeted anti-inflammatory activity of Korean red ginseng water extract vol.154, pp.1, 2014, https://doi.org/10.1016/j.jep.2014.04.008
  9. 21-O-Angeloyltheasapogenol E3, a Novel Triterpenoid Saponin from the Seeds of Tea Plants, Inhibits Macrophage-Mediated Inflammatory Responses in a NF-κB-Dependent Manner vol.2014, 2014, https://doi.org/10.1155/2014/658351
  10. Cornelian cherry consumption increases the l -arginine/ADMA ratio, lowers ADMA and SDMA levels in the plasma, and enhances the aorta glutathione level in rabbits fed a high-cholesterol diet vol.34, 2017, https://doi.org/10.1016/j.jff.2017.04.028
  11. Translational and post-translational regulation of mouse cation transport regulator homolog 1 vol.6, pp.1, 2016, https://doi.org/10.1038/srep28016
  12. Molecular mechanism of protopanaxadiol saponin fraction-mediated anti-inflammatory actions vol.39, pp.1, 2015, https://doi.org/10.1016/j.jgr.2014.06.002
  13. Impact of eNOS-Dependent Oxidative Stress on Endothelial Function and Neointima Formation vol.23, pp.9, 2015, https://doi.org/10.1089/ars.2014.6059
  14. Cytoprotective and Cytotoxic Effects of Rice Bran Extracts in Rat H9c2(2-1) Cardiomyocytes vol.2016, 2016, https://doi.org/10.1155/2016/6943053
  15. 1,8-Cineole ameliorates oxygen-glucose deprivation/reoxygenation-induced ischaemic injury by reducing oxidative stress in rat cortical neuron/glia vol.66, pp.12, 2014, https://doi.org/10.1111/jphp.12295
  16. AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract 2017, https://doi.org/10.1016/j.jgr.2017.06.003
  17. 6-Gingerol Attenuates Hydrogen Peroxide-induced DNA Damage in Human Umbilical Vein Endothelia Cells vol.20, pp.5, 2014, https://doi.org/10.3136/fstr.20.947
  18. (5-Hydroxy-4-oxo-4H-pyran-2-yl)methyl 6-hydroxynaphthalene-2-carboxylate, a kojic acid derivative, inhibits inflammatory mediator production via the suppression of Syk/Src and NF-κB activation vol.20, pp.1, 2014, https://doi.org/10.1016/j.intimp.2014.02.019
  19. Chlamydia pneumoniae and Oxidative Stress in Cardiovascular Disease: State of the Art and Prevention Strategies vol.16, pp.1, 2014, https://doi.org/10.3390/ijms16010724
  20. Cytoprotective Activity and Anti-inflammatory Properties of Artemisia nilagirica (Clarke) Extracts-A Study with Macrophages vol.7, pp.3, 2017, https://doi.org/10.1080/22311866.2017.1334588
  21. Involvement of the Antioxidant Effect and Anti-inflammatory Response in Butyrate-Inhibited Vascular Smooth Muscle Cell Proliferation vol.7, pp.11, 2014, https://doi.org/10.3390/ph7111008
  22. Lancemaside A fromCodonopsis lanceolataModulates the Inflammatory Responses Mediated by Monocytes and Macrophages vol.2014, 2014, https://doi.org/10.1155/2014/405158
  23. Reactive oxygen species regulate the quiescence of CD34-positive cells derived from human embryonic stem cells vol.103, pp.1, 2014, https://doi.org/10.1093/cvr/cvu106
  24. ROS-mediated carbon monoxide and drug release from drug-conjugated carboxyboranes vol.47, pp.2, 2018, https://doi.org/10.1039/C7DT03581K
  25. Influence of bradykinin B2 receptor and dopamine D2 receptor on the oxidative stress, inflammatory response, and apoptotic process in human endothelial cells vol.13, pp.11, 2018, https://doi.org/10.1371/journal.pone.0206443

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)