DOI QR코드

DOI QR Code

High Pressure X-ray Diffraction Study of LiFePO4/C-olivine-like Phase

LiFePO4/C-유사 감람석 결정구조에 대한 고압 X-선회절연구

  • Received : 2013.01.22
  • Accepted : 2013.03.22
  • Published : 2013.03.31

Abstract

Synthetic carbon-coated olivine-like structured lithium iron phosphate ($Li^+Fe^{2+}(PO_4)^{3-}/C$) powder composites were compressed up to 35.0 GPa in the symmetrical diamond anvil cell at room temperature. Bulk modulus of $LiFePO_4/C$ was determined to be $130.1{\pm}10.3$ GPa. New peak appears at the d-spacing of 3.386 ${\AA}$ above 18 GPa, and another new one at 2.854 ${\AA}$ around 35 GPa. The crystallographic symmetry of the sample (i.e. orthorhombic) is apparently retained up to 35 GPa as no clear evidence for the phase transition into spinel structure has been observed. The pressure-induced volume change in the M1 site ($Li^+O_6$) is more significant than those in M2($Fe^{2+}O_6$) and $PO_4$ tetrahedral sites.

Keywords

$LiFePO_4/C$;olivine-like structure;symmetrical diamond anvil cell;bulk modulus

References

  1. Tarascon, J.M. and Armand, M. (2001) Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367. https://doi.org/10.1038/35104644
  2. Young, R.A. and Wiles, D.B. (1982) Profile Shape Functions in Rietveld Refinements. Journal of Applied Crystallography, 15, 430-438. https://doi.org/10.1107/S002188988201231X
  3. Young R.A. (ed.) (1993) The Rietveld method. International Union of Crystallography, Oxford.
  4. Zha C.S., Duffy T.S., Downs R.T., Mao H.K., and Hemley R.J. (1998a) Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth and Planetary Science Letter, 159, 25-33. https://doi.org/10.1016/S0012-821X(98)00063-6
  5. Zha C.S., Duffy T.S., Downs R.T., Mao H.K., Hemley R.J., and Weidner D.J. (1998b) Single-crystal elasticity of the ${\alpha}$ and ${\beta}$ of $Mg_2SiO_4$ polymorphs at high pressure. In properties of Earth and planetary materials at high pressure and temperature, M.H. Manghnani & T. Yagi (eds.), American Geophysical Union Monograph, 101, 9-16.
  6. Delacourt, C., Rodriuez-Carvajal, J., Schmitt, B., Tarascon, J.-M., and Masquelier, C. (2005) Crystal chemistry of the olivine-type $Li_{x}FePO_{4}$ system ($0{\leq}x{\leq}1$) between 25 and $370^{\circ}C$. Solid State Science, 7(12), 1506-1516. https://doi.org/10.1016/j.solidstatesciences.2005.08.019
  7. Downs, R.T., Zha, C.S., Duffy, T.S., and Finger, L.W. (1996) The equation of state of forsterite to 17.2 GPa and effects of pressure media. American Mineralogist, 81, 51-55. https://doi.org/10.2138/am-1996-1-207
  8. Fujisawa, H. (1998) Elastic wave velocities of forsterite and its ${\beta}$-spinel form and chemical boundary hypothesis for the 410-km discontinuity. Journal of Geophysical Research, 103, 9591-9608. https://doi.org/10.1029/98JB00024
  9. Garcia-Moreno, O., Alvarez-Vega, M., Garcia-Alvarado, F., Garcia-Jaca, J., Gallardo-Amores, J.M., Sanjuan, M.L., and Amador, U. (2001) Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries: A new high-pressure form of $LiMPO_{4}$ (M= Fe and Ni). Chemistry of Materials, 13, 1570-1576. https://doi.org/10.1021/cm000596p
  10. Hwang, G.C., Choi, J.B., Kim, J.-K., and Ahn J.-H. (2009) Synthesis and Rietveld refinement of the cathode material $LiFePO_{4}$/C for rechargeable lithium batteries. Journal of Mineralogical Society of Korea, 22(1), 63-72 (in Korean with English abstract).
  11. Kim, J.-K., Cheruvally, G., Ahn, J.-H., Hwang, G.-C., and Choi, J.-B. (2008) Electrochemical properties of carbon-coated $LiFePO_{4}$ synthesized by a modified mechanical activation process. Journal of Physics and Chemistry of Solids, 69, 2371-2377. https://doi.org/10.1016/j.jpcs.2008.03.018
  12. Kim, Y.-H., Hwang, G.C., and Kim, S.-O. (2009) Compression study on a synthetic goethite. Journal of Mineralogical Society of Korea, 22(4), 325-330 (in Korean with English abstract).
  13. Klein, C. and Hurlbut Jr. C.S. (2002) The 22nd edition of the Manual of Mineral Science after J.D. Dana. John Wiley and Sons. New York, 433p.
  14. Li B., Chen G., Gwanmesia G.D., and Liebermann R.C. (1998) Sound velocity measurements at mantle transition zone conditions of pressure and temperature using ultrasonic interferometry in a multi anvil apparatus. In properties of Earth and planetary materials at high pressure and temperature, M.H. Manghnani & T. Yagi (eds.), American Geophysical Union Monograph 101, 41-61.
  15. Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 65-71. https://doi.org/10.1107/S0021889869006558
  16. Rodriguez-Carvajal, J. (2002) An Introduction to the Program Fullprof 2000 (v2001). Laboratoire Leon Brillouin, France.
  17. Streltsov, V.A., Belokoneva, E.L., Tsirelson, V.G., and Hansen, N.K. (1993) Multipole analysis of the electron density in triphylite, $LiFePO_4$, using X-ray diffraction data. Acta Crystallographica Sec. B, 49(2), 147-153. https://doi.org/10.1107/S0108768192004701
  18. Sung, C.-M. and Burns, R.G. (1978) Crystal structural features of the olivine-spinel transition. Physics and Chemistry of Minerals, 2, 177-197. https://doi.org/10.1007/BF00308172
  19. Tang, P. and Holzwarth, N.A.W. (2003) Electronic structure of $FePO_4$, $LiFePO_4$, and related materials. Physical Review B, 68, 165107(1-10). https://doi.org/10.1103/PhysRevB.68.165107
  20. Abramson, E. H., Brown, J.M., Slutsky, L.J., and Zaug, J. (1997) The elastic constants of San Carlos olivine to 17 GPa. Journal of Geophysical Research, 102, 12253-12264. https://doi.org/10.1029/97JB00682
  21. Alvarez-Vega, M.I., Gallardo-Amores, J.M., Garcia-Alvarado F., and Amador, U. (2006) Synthesis and structure of olivine-like arsenates $LiMAsO_4$ (M=Mn, Fe, Co and Ni) and their high-pressure spinel-like polymorphs. Solid State Sciences, 8(8), 952-957. https://doi.org/10.1016/j.solidstatesciences.2006.02.044
  22. Amador, U., Gallardo-Amores, J.M., Heymann, G., Huppertz, H., Mor, E., and Arroyo de Dompablo. (2009) High pressure polymorphs of LiCoPO4 and $LiCoAsO_4$. Solid State Sciences 11(2), 343-348. https://doi.org/10.1016/j.solidstatesciences.2008.09.012
  23. Andersson, A.S., Kalska, B., Hoggstrom, L., and Thomas, J.O. (2000) Lithium extraction/insertion $LiFePO_4$: an X-ray diffraction and Mossbauer spectroscopy study. Solid State Ionics, 130(1-2), 41-52. https://doi.org/10.1016/S0167-2738(00)00311-8
  24. Armand, M. and Tarascon, J.M. (2008) Building better batteries. Nature, 451(7179), 652-657. https://doi.org/10.1038/451652a
  25. Armstrong, A.R. and Bruce, P.G. (1996) Synthesis of layered $LiMnO_{2}$ as an electrode for rechargeable lithium batteries. Nature, 381, 499-500. https://doi.org/10.1038/381499a0
  26. Choi, J.B., Park, J.W., and Lee, S.W. (2003) Synthesis and structure of the layered cathode material $ Li[Li_{x}Mn_{1-x-y}Cr_{y}]O_{2}$ for rechargeable lithium batteries. Journal of Mineralogical Society of Korea, 16(3), 223-232 (in Korean with English abstract).

Cited by

  1. Compressibility Study of Pyromorphite at High Pressure vol.29, pp.4, 2016, https://doi.org/10.9727/jmsk.2016.29.4.191

Acknowledgement

Supported by : 한국연구재단