Detection of Carnation necrotic fleck virus and Carnation ringspot virus Using RT-PCR

RT-PCR에 의한 카네이션괴저바이러스와 카네이션둥근반점바이러스 정밀진단

  • 이시원 (농림수산검역검사본부 식물검역기술개발센터) ;
  • 강은하 (농림수산검역검사본부 식물검역기술개발센터) ;
  • 허노열 (농림수산검역검사본부 식물검역기술개발센터) ;
  • 김상목 (농림수산검역검사본부 식물검역기술개발센터) ;
  • 김유정 (농림수산검역검사본부 식물검역기술개발센터) ;
  • 신용길 (농림수산검역검사본부 식물검역기술개발센터)
  • Received : 2012.06.14
  • Accepted : 2013.02.20
  • Published : 2013.03.31


Carnation is considered to be one of the top three cutting flowers in the world, which is a main crop with 21 billion annual volume of manufacture. The four carnation items such as cuttings, seed, plant and unrooted cuttings are imported and exported. Viruses can be easily transmitted during vegetative propagation of carnation. Carnation necrotic fleck virus (CNFV) and Carnation ringspot virus (CRSV) are designated as Korea plant quarantine viruses and inspected. This study was aimed to develop specific primer sets for easy and rapid detection of CNFV and CRSV. Two RT-PCR primer sets were efficiently amplified 288 and 447 bp fragments for CNFV and 503 549 bp fragments for CRSV. Furthermore, developed nested primer sets make possible to high sensitive detection and verification. CNFV nested PCR primer sets all produced band of 147 bp and CRSV nested PCR primer sets did bands of 395 and 347 bp. In addition, plasmid inserted 6 sequences in amplicon were used as a positive control to improve inspection confidence. The successful application of PCR module newly developed in this study will be highly useful for detect of CNFV and CRSV for quarantine inspections.

카네이션은 세계 3대 절화용 화훼작물의 하나로, 농가 생산액 210억 원에 이르는 주요작물이다. 이들은 절화, 종자, 묘 및 삽수의 4 품목으로 수출입 되고 있다. 카네이션과 같은 영양번식성 작물의 경우, 증식하는 과정 중에 바이러스의 확산과 전파가 용이한데, 우리나라에서는 카네이션괴저바이러스(CNFV)와 카네이션둥근반점바이러스(CRSV)를 식물검역 바이러스로 지정하여 수입검사를 수행하고 있다. 본 연구에서는 CNFV와 CRSV를 신속, 정밀하고 쉽게 진단할 수 있는 특이적인 프라이머를 고안하였으며, 높은 검출 감도를 가지는 nested 프라이머 조합을 개발하였다. CNFV를 검사하기 위해 최종 선발된 특이적인 프라이머는 2 세트로 288과 447 bp를, CRSV를 검사하기 위해 최종 선발된 특이적인 프라이머는 2 세트로 503과 549 bp를 증폭하였다. CNFV의 nested는 2 세트 모두 147 bp로 동일하며, CRSV는 각각 395와 347 bp의 밴드를 증폭하였다. 또한, 실험의 신뢰도를 높이기 위하여, 증폭산물에 염기서열 6개를 삽입한 플라스미드를 제작하여 양성대조구로 활용하였다. 본 연구에서 개발한 방법은, 향후 CNFV와 CRSV에 대한 신속, 정밀한 국경검역을 지원할 수 있을 것이라고 기대된다.



  1. Caruso, P., Bertolini, E., Cambra, M. and Lopez, M. M. 2003. A new and sensitive co-operational polymerase chain reaction for rapid detection of Ralstonia solanacearum in water. J. Microbiol. Method. 55: 257-272.
  2. Cho, M. S., Park, D. S., Lee, J. W., Chi, H. Y., Sohn, S. I., Jeon, B. K. and Ma, J. B. 2012. Quantitative real-time PCR assay for detection of Paenibacillus polymyxa using membrane-fusion protein-based primers. J. Microbiol. Biotechnol. 22: 1575-1579.
  3. Hollings, M. and Stone, O. M. 1964. Investigation of carnation viruses. I. Carnation mottle. Ann. Appl. Biol. 53: 103-118.
  4. Kang, C. H., Han, B. S., Kown, S. H. and Song, Y. J. 2011. Selection of suitable varieties of carnation (Dianthus caryophyllus L.) and optimization of culture conditions for efficient tissue culture. Korean J. Plant Res. 24: 121-129. (In Korean)
  5. Kim, D., Hyun, J., Hwang, H. and Lee, S. 2000. RT-PCR Detection of Citrus tristeza virus from early Satsuma mandarin and Yuzu in Cheju Island. Plant Pathology J. 16:48-51.
  6. Kim, Y. J., Park, S., Yie, S. W. and Kim, K. H. 2005. RT-PCR Detection of dsRNA Mycoviruses Infecting Pleurotus ostreatus and Agaricus blazei Murrill. Plant Pathology J. 21: 343-348.
  7. Kim, Y. S., Jeong, J. H. and Eun, J. S. 2004. Virus free healthy plant production through meristem culture in carnation (Dianthus caryophillus). Korean J. Plant Res. 17: 331-338. (In Korean)
  8. Lee, J. S., Cho, W. K., Choi, H. S. and Kim, K. H. 2011a. RT-PCR Detection of Five Quarantine Plant RNA Viruses Belonging to Poty-and Tospoviruses. Plant Pathology J. 27: 291-296.
  9. Lee, J. S., Cho, W. K., Lee, S. H., Choi, H. S. and Kim, K. H. 2011b. Development of RT-PCR based method for detecting five non-reported quarantine plant viruses infecting the family Cucurbitaceae or Solanaceae. Plant Pathology J. 27: 93-97.
  10. Lu, X., Li, X., Mo, Z., Jin, F., Wang, B., Zhao, H., Shan, X. and Shi, L. 2012. Rapid identification of Chikungunya and Dengue virus by a real-time reverse transcription-loopmediated isothermal amplification method. Am. J. Trop. Med. Hyg. 87: 947-953.
  11. Meng, S., Xu, J., Xiong, Y. and Ye, C. 2012. Rapid and sensitive detection of Plesiomonas shigelloides by loop-mediated isothermal amplification of the hugA gene. PLoS One 7: 1-6.
  12. Nelson, M. and McClelland, M. 1992. Use of DNA methyltransferase/ endonuclease enzyme combinations for megabase mapping of chromosomes. Methods Enzymol. 216: 279-303.
  13. Pan, L., Zhang, L., Wang, G. and Liu, Q. 2012. Rapid, simple, and sensitive detection of the ompB gene of spotted fever group rickettsiae by loop-mediated isothermal amplification. BMC Infect Dis. 12: 254-260.
  14. Pan, Y. B., Burner, D. M. and Legendre, B. L. 2000. An assessment of the phylogenetic relationship among sugarcane and related taxa based on the nucleotide sequence of 5S rRNA intergenic spacers. Genetica 108: 285-295.
  15. Park, M. R. and Kim, K. H. 2004. RT-PCR Detection of three non-reported fruit tree viruses useful for quarantine purpose in Korea. Plant Pathology J. 20: 147-154.
  16. Priou, S., Gutarra, L. and Aley, P. 2006. An improved enrichment broth for the sensitive detection of Ralstonia solanacearum (biovars 1 and 2A) in soil using DAS-ELISA. Plant Pathology J. 55: 36-45.
  17. Sanchez-Navarro, J. A., Canizares, M. C., Cano, E. A. and Pallas, V. 1999. Simultaneous detection of five carnation viruses by non-isotopic molecular hybridization. J. Virol. Method. 82: 167-175.
  18. Woo, G. J., Park, S. H., Lee, D. H., Lee, W. Y., Lee, S. H., Park, Y. C., Kwak, H. S., Kang, Y. S., Park, J. S., Nam, B. S. and Kim, C. N. 2002. Establishment of the detection methods for genetically modified foods. Annu. Rep. KFDA.
  19. Zukker, A., Ahroni, T., Tzfira, T., Ben-Mier, H. and Vainstein, A. 1999. Wounding by bombardment yields highly efficient Agrobacterium-mediated transformation of carnation (Dianthus caryophyllus L.). Mol. Breeding 5: 367-375.

Cited by

  1. Development of PCR Diagnostic System for Detection of the Seed-Transmitted Tobacco Ringspot Virus in Quarantine vol.55, pp.2, 2015,
  2. Development of a PCR Diagnostic System for Detecting Andean Potato Mottle Virus Associated with Potato Quarantine in Korea vol.92, pp.4, 2015,
  3. Development of Nested PCR-Based Specific Markers for Detection of Peach Rosette Mosaic Virus in Plant Quarantine vol.56, pp.1, 2016,
  4. Development of a Specific Diagnostic System for Detecting Turnip Yellow Mosaic Virus from Chinese Cabbage in Korea vol.56, pp.1, 2016,
  5. Development of a PCR Diagnostic System for Iris yellow spot tospovirus in Quarantine vol.30, pp.4, 2014,
  6. Development of RT-PCR and Nested PCR for Detecting Four Quarantine Plant Viruses Belonging to Nepovirus vol.19, pp.3, 2013,
  7. Development and of Diagnostic System for Detection of Cowpea chlorotic mottle virus using by Nested PCR vol.41, pp.4, 2014,
  8. Development of PCR-base Diagnostic System for the Detection of Andean potato latent virus vol.42, pp.2, 2015,
  9. Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants vol.31, pp.4, 2015,
  10. Plant quarantine isolated cultivation system in Korea and results of recorded in 2005-2012 vol.40, pp.4, 2013,
  11. Development and Optimization of a Reverse Transcription Hemi-Nested PCR Primer for the Detection of Potato Mop-Top Virus at Quarantine Inspection Sites in Korea vol.57, pp.2, 2017,
  12. Development and Verification of Nested PCR Assay for Detection ofTobacco rattle virusin Plant Quarantine vol.45, pp.1, 2015,
  13. Development of Nucleotide Primers for Dignostic RT-PCR and Nested PCR Detection of Three Seed-transmitted Viruses (CRLV, SpLV and WClMV) in Quarantine vol.48, pp.3, 2014,
  14. Development of Nucleotide Primers for Diagnostic RT-PCR and Nested PCR Detection of Pelargonium zonate spot virus in Quarantine vol.48, pp.6, 2014,
  15. Development of Diagnostic System for Detecting Tomato ringspot virus in Quarantine vol.49, pp.4, 2015,