DOI QR코드

DOI QR Code

Bacterial Traits Involved in Colonization of Arabidopsis thaliana Roots by Bacillus amyloliquefaciens FZB42

  • Dietel, Kristin ;
  • Beator, Barbara ;
  • Budiharjo, Anto ;
  • Fan, Ben ;
  • Borriss, Rainer
  • Received : 2012.10.16
  • Accepted : 2012.11.27
  • Published : 2013.03.01

Abstract

Colonization studies previously performed with a green-fluorescent-protein, GFP, labeled derivative of Bacillus amyloliquefaciens FZB42 revealed that the bacterium behaved different in colonizing surfaces of plant roots of different species (Fan et al., 2012). In order to extend these studies and to elucidate which genes are crucial for root colonization, we applied targeted mutant strains to Arabidopsis seedlings. The fates of root colonization in mutant strains impaired in synthesis of alternative sigma factors, non-ribosomal synthesis of lipopeptides and polyketides, biofilm formation, swarming motility, and plant growth promoting activity were analyzed by confocal laser scanning microscopy. Whilst the wild-type strain heavily colonized surfaces of root tips and lateral roots, the mutant strains were impaired in their ability to colonize root tips and most of them were unable to colonize lateral roots. Ability to colonize plant roots is not only dependent on the ability to form biofilms or swarming motility. Six mutants, deficient in abrB-, sigH-, sigD-, nrfA-, yusV and RBAM017410, but not affected in biofilm formation, displayed significantly reduced root colonization. The nrfA- and yusV-mutant strains colonized border cells and, partly, root surfaces but did not colonize root tips or lateral roots.

Keywords

Arabidopsis thaliana;Bacillus amyloliquefaciens;biocontrol;plant growth promotion;root colonization

References

  1. Branda, S. S., González-Pastor, J. E., Ben-Yehuda, S., Losick, R. and Kolter, R. 2001. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. USA 98:11621−11626. https://doi.org/10.1073/pnas.191384198
  2. Fan, B., Chen, X. H., Budiharjo, A., Bleiss, W., Vater, J. and Borris, R. 2011. Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J. Biotechnol. 151:303−311. https://doi.org/10.1016/j.jbiotec.2010.12.022
  3. Idris, E. E., Iglesias, D. J., Talon, M. and Borris, R. 2007. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact. 20:619−626. https://doi.org/10.1094/MPMI-20-6-0619
  4. Idriss, E. E., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., Richter, T. and Borris, R. 2002. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect. Microbiology 148:2097−2109.
  5. Koumoutsi, A., Chen, X. H., Henne, A., Liesegang, H., Hitzeroth, G., Franke, P., Vater, J. and Borris, R. 2004. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J. Bacteriol. 186:1084−1096. https://doi.org/10.1128/JB.186.4.1084-1096.2004
  6. Koumoutsi, A., Chen, X. H., Vater, J. and Borris, R. 2007. DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Appl. Environ. Microbiol. 73:6953−6964. https://doi.org/10.1128/AEM.00565-07
  7. Le Breton, Y., Mohapatra, N. P. and Haldenwang, W. G. 2006. In vivo random mutagenesis of Bacillus subtilis by use of TnYLB-1, a mariner-based transposon. Appl. Environ. Microbiol. 72:327−333. https://doi.org/10.1128/AEM.72.1.327-333.2006
  8. Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63:541−556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  9. Budiharjo, A. 2011. Plant-Bacteria Interactions: Molecular Mechanisms of Phytostimulation by Bacillus amyloliquefaciens FZB42. Bacterial Genetics. Berlin, Humboldt-University Berlin. PhD.
  10. Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., et al. 2007. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25:1007−1014. https://doi.org/10.1038/nbt1325
  11. Chen, X. H., Koumoutsi, A., Scholz, R., Schneider, K., Vater, J., Süssmuth, R., Piel, R. and Borris, R. 2009a. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J. Biotechnol. 140:27−37. https://doi.org/10.1016/j.jbiotec.2008.10.011
  12. Chen, X. H., Scholz, R., Borris, M., Junge, H., Mogel, G., Kunz, R. and Borris, R. 2009b. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. J. Biotechnol. 140:38−44. https://doi.org/10.1016/j.jbiotec.2008.10.015
  13. Chin-A-Woeng, T. F. C., Bloemberg, G. V., Mulders, I. H., Dekkers, L. C. and Lugtenberg, B. J. 2000. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot. Mol. Plant-Microbe Interact. 13:1340−1345. https://doi.org/10.1094/MPMI.2000.13.12.1340
  14. Fan, B., Borriss, R., Bleiss, W. and Wu, X. 2012. Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J. Microbiol. 50:38−44. https://doi.org/10.1007/s12275-012-1439-4
  15. Borriss, R., Chen, X. H., Ruecket, C., Blom, J., Becker, A., Baumgarth, B., Fan, B., Pukall, R., Schumann, P. Sproer, C., Junge, H., Vater, J., Pühler, A. and Klenk, H. P. 2011. Relationship of Bacillus amyloliquefaciens clades associated with strains DSM 7T and FZB42T: a proposal for Bacillus amyloliquefaciens subsp. amyloliquefaciens subsp. nov. and Bacillus amyloliquefaciens subsp. plantarum subsp. nov. based on complete genome sequence comparisons. Int. J. Syst. Evol. Microbiol. 61(Pt 8):1786−1801. https://doi.org/10.1099/ijs.0.023267-0
  16. Mariappan, A., Makarewicz, O., Chen, X. H. and Borris, R. 2012. Two-component response regulator DegU controls the expression of bacilysin in plant-growth-promoting bacterium Bacillus amyloliquefaciens FZB42. J. Mol. Microbiol. Biotechnol. 22:114−125.
  17. Scholz, R., Molohon, K. J., Nachtigall, J., Vater, J., Markley, A. L., Süssmuth, R. D., Mitchell, D. A. and Borris, R. 2011. Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J. Bacteriol. 193:215−224. https://doi.org/10.1128/JB.00784-10

Cited by

  1. Collagen-Like Proteins (ClpA, ClpB, ClpC, and ClpD) Are Required for Biofilm Formation and Adhesion to Plant Roots by Bacillus amyloliquefaciens FZB42 vol.10, pp.2, 2015, https://doi.org/10.1371/journal.pone.0117414
  2. Kin discrimination between sympatricBacillus subtilisisolates vol.112, pp.45, 2015, https://doi.org/10.1073/pnas.1512671112
  3. Stimulation of plant growth and biocontrol by Bacillus amyloliquefaciens subsp. plantarum FZB42 engineered for improved action vol.1, pp.1, 2014, https://doi.org/10.1186/s40538-014-0012-2
  4. Transposon Mutagenesis of the Plant-Associated Bacillus amyloliquefaciens ssp. plantarum FZB42 Revealed That the nfrA and RBAM17410 Genes Are Involved in Plant-Microbe-Interactions vol.9, pp.5, 2014, https://doi.org/10.1371/journal.pone.0098267
  5. Biological Control Potential of Bacillus amyloliquefaciens KB3 Isolated from the Feces of Allomyrina dichotoma Larvae vol.32, pp.3, 2016, https://doi.org/10.5423/PPJ.NT.12.2015.0274
  6. Sfp-type PPTase inactivation promotes bacterial biofilm formation and ability to enhance wheat drought tolerance vol.6, 2015, https://doi.org/10.3389/fmicb.2015.00387
  7. The highly modified microcin peptide plantazolicin is associated with nematicidal activity of Bacillus amyloliquefaciens FZB42 vol.97, pp.23, 2013, https://doi.org/10.1007/s00253-013-5247-5
  8. Biocontrol potential of antagonist Bacillus subtilis Tpb55 against tobacco black shank vol.61, pp.2, 2016, https://doi.org/10.1007/s10526-015-9705-0
  9. Spatiotemporal Monitoring of the Antibiome Secreted byBacillusBiofilms on Plant Roots Using MALDI Mass Spectrometry Imaging vol.86, pp.9, 2014, https://doi.org/10.1021/ac500290s
  10. Cyclic Lipopeptides ofBacillus amyloliquefacienssubsp.plantarumColonizing the Lettuce Rhizosphere Enhance Plant Defense Responses Toward the Bottom Rot PathogenRhizoctonia solani vol.28, pp.9, 2015, https://doi.org/10.1094/MPMI-03-15-0066-R
  11. Lipopeptides as main ingredients for inhibition of fungal phytopathogens byBacillus subtilis/amyloliquefaciens vol.8, pp.2, 2015, https://doi.org/10.1111/1751-7915.12238
  12. Spraying of Leaf-Colonizing Bacillus amyloliquefaciens Protects Pepper from Cucumber mosaic virus vol.100, pp.10, 2016, https://doi.org/10.1094/PDIS-03-16-0314-RE
  13. Deciphering the conserved genetic loci implicated in plant disease control through comparative genomics of Bacillus amyloliquefaciens subsp. plantarum vol.6, 2015, https://doi.org/10.3389/fpls.2015.00631
  14. Mining the phytomicrobiome to understand how bacterial coinoculations enhance plant growth vol.6, 2015, https://doi.org/10.3389/fpls.2015.00784
  15. Scaling from the growth chamber to the greenhouse to the field: Demonstration of diminishing effects of mitigation of salinity in peppers inoculated with plant growth-promoting bacterium and humic acids vol.119, 2017, https://doi.org/10.1016/j.apsoil.2017.07.002
  16. Engineering chemical interactions in microbial communities vol.47, pp.5, 2018, https://doi.org/10.1039/C7CS00664K
  17. Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42 vol.25, pp.30, 2018, https://doi.org/10.1007/s11356-017-0469-1
  18. by use of the CRISPR-Cas9 system pp.14622912, 2018, https://doi.org/10.1111/1462-2920.14305
  19. Wall Teichoic Acids Are Required for Biofilm Formation and Root Colonization vol.85, pp.5, 2018, https://doi.org/10.1128/AEM.02116-18