DOI QR코드

DOI QR Code

Trends on Synthesis of Cu Nanoparticles by a Wet Reduction Method

습식 환원법에 의한 Cu 나노입자의 합성 동향

  • Shin, Yong Moo (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Chee, Sang-Soo (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Jong-Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 신용무 (서울과학기술대학교 신소재공학과) ;
  • 지상수 (서울과학기술대학교 신소재공학과) ;
  • 이종현 (서울과학기술대학교 신소재공학과)
  • Received : 2013.09.06
  • Accepted : 2013.09.27
  • Published : 2013.09.30

Abstract

Interest in copper nanoparticles has increased as an alternative for substituting silver nanoparticles because of its lower cost and less electromigration effect than silver. In this paper, the recent research trends and main results in wet-chemical synthesis of sub-100 nm Cu nanoparticles were summarized. The characteristics of synthesis were discussed with a classification such as modified polyol synthesis, modified hydrothermal synthesis, solvothermal synthesis, and the others, focussing on effects of capping agents, reductants, and pH. Information on the oxidation of synthesized copper nanoparticles were additionally commented.

Acknowledgement

Supported by : 서울과학기술대학교

References

  1. G. Carotenuto, G. P. Pepe and L. Nicolais, "Preparation and Characterization of Nano-Sized Ag/PVP Composites for Optical Applications", Eur. Phys. J. B, 16, 11 (2000). https://doi.org/10.1007/s100510070243
  2. C. S. S. R. Kumar, Metallic Nanomaterials, pp.3-557, WILEY-VCH, Weinheim (2009).
  3. V. K. LaMer and R. H. Dinegar, "Theory, Production and Mechanism of Formation of Monodispersed Hydrosols", J. Am. Chem. Soc., 72, 4847 (1950). https://doi.org/10.1021/ja01167a001
  4. V. K. LaMer, "Nucleation in Phase Transitions", Ind. Eng. Chem., 44, 1270 (1952). https://doi.org/10.1021/ie50510a027
  5. X. Xu, X. Luo, H. Zhuang, W. Li and B. Zhang, "Electroless Silver Coating on Fine Copper Powder and Its Effects on Oxidation Resistance, Mater. Lett., 57, 3987 (2003) https://doi.org/10.1016/S0167-577X(03)00252-0
  6. M. Tsuji, S. Hikino, Y. Sano and M. Horigome, Preparation of Cu@Ag Core-Shell Nanoparticles Using a Two-Step Polyol Process under Bubbling of N2 Gas", Chem. Lett., 38(6), 518 (2009). https://doi.org/10.1246/cl.2009.518
  7. M. Tsuji, S. Hikino, R. Tanabe, M. Matsunaga and Y. Sano, "Synthesis of Ag/Cu Alloy and Ag/Cu Alloy Core Cu Shell Nanoparticles Using a Polyol Method", Cryst. Eng. Comm., 12, 3900 (2010). https://doi.org/10.1039/c0ce00064g
  8. H.-S. Kim, S. R. Dhage, D.-E. Shin and H. T. Hahn, "Intense Pulsed Light Sintering of Copper Nanoink for Printed Electronics", Appli. Phys. A, 97, 791 (2009). https://doi.org/10.1007/s00339-009-5360-6
  9. S. J. Kim, E. A. Stach and C. A. Handwerker, "Fabrication of Conductive Interconnections by Ag Migration in Cu-Ag Core-Shell Nanoparticles", Appl. Phys. Lett., 96, 144101 (2010). https://doi.org/10.1063/1.3364132
  10. Y. Peng, C. Yang, K. Chen, S. R. Popuri, C.-H. Lee and B.- S. Tang, "Study on Synthesis of Ultrafine Cu-Ag Core-Shell Powders with High Electrical Conductivity", Appl. Surf. Sci., 263, 38 (2012). https://doi.org/10.1016/j.apsusc.2012.08.066
  11. A. Muzikansky, P. Nanikashvili, J. Grinblat and D. Zitoun, "Ag Dewetting in Cu@Ag Monodispersed Core-Shell Nanoparticles", J. Phys. Chem. C, 117, 3093 (2013).
  12. J. Ryu, H.-S. Kim and H. T. Hahn, "Reactive Sintering of Copper Nanoparticles Using Intense Pulsed Light of Printed Electronics", J. Electron. Mater., 40(1), 42 (2011). https://doi.org/10.1007/s11664-010-1384-0
  13. S.-J. Hong, J.-W. Kim, C. J. Han, T.-S. Kim and T.-W Hong, "Trends on Technology of Eco-Friendly Metal and Ceramic Nanoparticle Inks for Direct Printing", J. Microelectron. Packag. Soc., 17(2), 1 (2010).
  14. B. K. Park, D. Kim, S. Jeong, J. Moon and J. S. Kim, "Direct Writing of Copper Conductive Patterns by Ink-jet Printing", Thin Solid Films, 515, 7706 (2007). https://doi.org/10.1016/j.tsf.2006.11.142
  15. H.-X. Zhang, U. Siegert, R. Liu and W.-B. Cai, "Facile Fabrication of Ultrafine Copper Nanoparticles in Organic Solvent", Nanoscale Res. Lett., 4, 705 (2009). https://doi.org/10.1007/s11671-009-9301-2
  16. X.-F. Tang, Z.-G. Yang and W.-J. Wang, "A Simple Way of Preparing High-Concentration and High-Purity Nano Copper Colloid for Conductive Ink in Inkjet Printing Technology", Colloids Surf. A, 360, 99 (2010). https://doi.org/10.1016/j.colsurfa.2010.02.011
  17. M. Bicer and I. Sisman, "Controlled Synthesis of Copper Nano/Microstructures Using Ascorbic Acid in Aqueous CTAB Solution", Powder Technol., 198, 279 (2010). https://doi.org/10.1016/j.powtec.2009.11.022
  18. T. M. D. Dang, T. T. T. Le, E. Fribourg-Blanc and M. C. Dang, "The Influence of Solvents and Surfactants on the Preparation of Copper Nanoparticles by a Chemical Reduction Method", Adv. Nat. Sci.: Nanosci. Nanotechnol., 2, 025004 (2011). https://doi.org/10.1088/2043-6262/2/2/025004
  19. C. S. Choi, Y. H. Jo, M. G. Kim and H. M. Lee, "Control of Chemical Kinetics for Sub-10 nm Cu Nanoparticles to Fabricate Highly Conductive Ink below $150{^{\circ}C}$", Nanotechnology, 23, 065601 (2012). https://doi.org/10.1088/0957-4484/23/6/065601
  20. Y. Wang and T. Asefa, "Poly(allylamine)-Stabilized Colloidal Copper Nanoparticles: Synthesis, Morphology and Their Surface- Enhanced Raman Scattering Properties", Langmuir, 26(10), 7469 (2010). https://doi.org/10.1021/la904199f
  21. J. Xiong, Y. Wang, Q. Xue and X. Wu, "Synthesis of Highly Stable Dispersions of Nanosized Copper Particles Using Lascorbic Acid", Green Chem., 13, 900 (2011). https://doi.org/10.1039/c0gc00772b
  22. D. Zhang and H. Yang, "Gelatin-stabilized Copper Nanoparticles: Synthesis, Morphology and Their Surface-enhanced Raman Scattering Properties", Physica B, 415, 44 (2013). https://doi.org/10.1016/j.physb.2013.01.041
  23. J. L. C. Huaman, K. Sato, S. Kurita and T. Matsumoto, "Copper Nanoparticles Synthesized by Hydroxyl Ion Assisted Alcohol Reduction for Conducting Ink", J. Mater. Chem., 21, 7062 (2011). https://doi.org/10.1039/c0jm04470a
  24. D. Li, W. Xie and W. Fang, "Preparation and Properties of Copper-Oil-based Nanofluids", Nanoscale Res. Lett., 6(1), 1 (2011).
  25. S. U Shenoy and A N. Shetty, "Synthesis of Copper Nanofluids Using Ascorbic Acid Reduction Method via One Step Solution Phase Approach", J. ASTM Int., 9(5), 19428 (2012).
  26. H. T. Hai, J. G. Ahn, D. J. Kim, J. R. Lee, H. S. Chung and C. O. Kim, "Developing Process for Coating Copper Particles with Silver by Electroless Plating Method", Sur. Coat. Technol., 201, 3788 (2006). https://doi.org/10.1016/j.surfcoat.2006.03.025

Cited by

  1. Alternative Sintering Technology of Printed Nanoparticles for Roll-to-Roll Process vol.21, pp.4, 2014, https://doi.org/10.6117/kmeps.2014.21.4.015