Tumor Cell Clone Expressing the Membrane-bound Form of IL-12p35 Subunit Stimulates Antitumor Immune Responses Dominated by $CD8^+$ T Cells

  • Lim, Hoyong (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Do, Seon Ah (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Park, Sang Min (Department of Biochemistry, College of Natural Sciences, Chungnam National University) ;
  • Kim, Young Sang (Department of Biochemistry, College of Natural Sciences, Chungnam National University)
  • Received : 2013.02.21
  • Accepted : 2013.03.11
  • Published : 2013.04.30


IL-12 is a secretory heterodimeric cytokine composed of p35 and p40 subunits. IL-12 p35 and p40 subunits are sometimes produced as monomers or homodimers. IL-12 is also produced as a membrane-bound form in some cases. In this study, we hypothesized that the membrane-bound form of IL-12 subunits may function as a costimulatory signal for selective activation of TAA-specific CTL through direct priming without involving antigen presenting cells and helper T cells. MethA fibrosarcoma cells were transfected with expression vectors of membrane-bound form of IL-12p35 (mbIL-12p35) or IL-12p40 subunit (mbIL-12p40) and were selected under G418-containing medium. The tumor cell clones were analyzed for the expression of mbIL-12p35 or p40 subunit and for their stimulatory effects on macrophages. The responsible T-cell subpopulation for antitumor activity of mbIL-12p35 expressing tumor clone was also analyzed in T cell subset-depleted mice. Expression of transfected membranebound form of IL-12 subunits was stable during more than 3 months of in vitro culture, and the chimeric molecules were not released into culture supernatants. Neither the mbIL-12p35-expressing tumor clones nor mbIL-12p40-expressing tumor clones activated macrophages to secrete TNF-${\alpha}$. Growth of mbIL-12p35-expressing tumor clones was more accelerated in the $CD8^+$ T cell-depleted mice than in $CD4^+$ T cell-depleted or normal mice. These results suggest that $CD8^+$ T cells could be responsible for the rejection of mbIL-12p35-expressing tumor clone, which may bypass activation of antigen presenting cells and $CD4^+$ helper T cells.


  1. Kobayashi, M., L. Fitz, M. Ryan, R. M. Hewick, S. C. Clark, S. Chan, R. Loudon, F. Sherman, B. Perussia, and G. Trinchieri. 1989. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J. Exp. Med. 170: 827-845.
  2. Gately, M. K., D. E. Wilson, and H. L. Wong. 1986. Synergy between recombinant interleukin 2 (rIL 2) and IL 2-depleted lymphokine-containing supernatants in facilitating allogeneic human cytolytic T lymphocyte responses in vitro. J. Immunol. 136: 1274-1282.
  3. Stern, A. S., F. J. Podlaski, J. D. Hulmes, Y. C. Pan, P. M. Quinn, A. G. Wolitzky, P. C. Familletti, D. L. Stremlo, T. Truitt, and R. Chizzonite, et al. 1990. Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc. Natl. Acad. Sci. U. S. A. 87: 6808-6812.
  4. Hsieh, C. S., S. E. Macatonia, C. S. Tripp, S. F. Wolf, A. O'Garra, and K. M. Murphy. 199. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260: 547-549.
  5. Manetti, R., P. Parronchi, M. G. Giudizi, M. P. Piccinni, E. Maggi, G. Trinchieri, and S. Romagnani. 1993. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J. Exp. Med. 177: 1199-1204.
  6. Gately, M. K., B. B. Desai, A. G. Wolitzky, P. M. Quinn, C. M. Dwyer, F. J. Podlaski, P. C. Familletti, F. Sinigaglia, R. Chizonnite, and U. Gubler, et al. 1991. Regulation of human lymphocyte proliferation by a heterodimeric cytokine, IL-12 (cytotoxic lymphocyte maturation factor). J. Immunol. 147: 874-882.
  7. Trinchieri, G. 1998. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv. Immunol. 70: 83-243.
  8. Weiss, J. M., J. J. Subleski, J. M. Wigginton, and R. H. Wiltrout. 2007. Immunotherapy of cancer by IL-12-based cytokine combinations. Expert. Opin. Biol. Ther. 7: 1705-1721.
  9. D'Andrea, A., M. Rengaraju, N. M. Valiante, J. Chehimi, M. Kubin, M. Aste, S. H. Chan, M. Kobayashi, D. Young, and E. Nickbarg, et al. Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J. Exp. Med. 176: 1387-1398.
  10. Gillessen, S., D. Carvajal, P. Ling, F. J. Podlaski, D. L. Stremlo, P. C. Familletti, U. Gubler, D. H. Presky, A. S. Stern, and M. K. Gately. 1995. Mouse interleukin-12 (IL-12) p40 homodimer: a potent IL-12 antagonist. Eur. J. Immunol. 25: 200-206.
  11. Heinzel, F. P., A. M. Hujer, F. N. Ahmed, and R. M. Rerko. 1997. In vivo production and function of IL-12 p40 homodimers. J. Immunol. 158: 4381-4388.
  12. Ling, P., M. K. Gately, U. Gubler, A. S. Stern, P. Lin, K. Hollfelder, C. Su, Y. C. Pan, and J. Hakimi. 1995. Human IL-12 p40 homodimer binds to the IL-12 receptor but does not mediate biologic activity. J. Immunol. 154: 116-127.
  13. Jana, M., S. Dasgupta, R. N. Saha, X. Liu, and K. Pahan. 2003. Induction of tumor necrosis factor-alpha (TNF-alpha) by interleukin-12 p40 monomer and homodimer in microglia and macrophages. J. Neurochem. 86: 519-528.
  14. Jana, M. and K. Pahan. 2009. IL-12 p40 homodimer, but not IL-12 p70, induces the expression of IL-16 in microglia and macrophages. Mol. Immunol. 46: 773-783.
  15. Cooper, A. M. and S. A. Khader. 2007. IL-12p40: an inherently agonistic cytokine. Trends. Immunol. 28: 33-38.
  16. Khader, S. A., S. Partida-Sanchez, G. Bell, D. M. Jelley-Gibbs, S. Swain, J. E. Pearl, N. Ghilardi, F. J. Desauvage, F. E. Lund, and A. M. Cooper. 2006. Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. J. Exp. Med. 203: 1805-1815.
  17. Fan, X., V. Sibalic, E. Niederer, and R. P. Wüthrich. 1996. The proinflammatory cytokine interleukin-12 occurs as a cell membrane-bound form on macrophages. Biochem. Biophys. Res. Commun. 225: 1063-1067.
  18. Wolf, S. F., P. A. Temple, M. Kobayashi, D. Young, M. Dicig, L. Lowe, R. Dzialo, L. Fitz, C. Ferenz, R. M. Hewick, et al. 1991. Cloning of cDNA for natural killer cell stimulatory factor, a heterodimeric cytokine with multiple biologic effects on T and natural killer cells. J. Immunol. 146: 3074-3081.
  19. Brunda, M. J., L. Luistro, R. R. Warrier, R. B. Wright, B. R. Hubbard, M. Murphy, S. F. Wolf, and M. K. Gately. 1993. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J. Exp. Med. 178: 1223-1230.
  20. Nastala, C. L., H. D. Edington, T. G. McKinney, H. Tahara, M. A. Nalesnik, M. J. Brunda, M. K. Gately, S. F. Wolf, R. D. Schreiber, W. J. Storkus, et al. 1994. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J. Immunol. 153: 1697-1706.
  21. Atkins, M. B., M. J. Robertson, M. Gordon, M. T. Lotze, M. DeCoste, J. S. DuBois, J. Ritz, A. B. Sandler, H. D. Edington, P. D. Garzone, J. W. Mier, C. M. Canning, L. Battiato, H. Tahara, and M. L. Sherman. 1997. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin. Cancer Res. 3: 409-417.
  22. Car, B. D., V. M. Eng, J. M. Lipman, and T. D. Anderson. 1999. The toxicology of interleukin-12: a review. Toxicol. Pathol. 27: 58-63.
  23. Leonard, J. P., M. L. Sherman, G. L. Fisher, L. J. Buchanan, G. Larsen, M. B. Atkins, J. A. Sosman, J. P. Dutcher, N. J. Vogelzang, and J. L. Ryan. 1997. Effects of single-dose interleukin- 12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90: 2541-2548.
  24. Kim, Y. S. 2009. Tumor Therapy Applying Membrane-bound Form of Cytokines. Immune Netw. 9: 158-168.
  25. Li, Q., L. Li, W. Shi, X. Jiang, Y. Xu, F. Gong, M. Zhou, C. K. 3rd Edwards, and Z. Li. 2006. Mechanism of action differences in the antitumor effects of transmembrane and secretory tumor necrosis factor-alpha in vitro and in vivo. Cancer Immunol. Immunother. 55: 1470-1479.
  26. Rieger, R., D. Whitacre, M. J. Cantwell, C. Prussak, and T. J. Kipps. 2009. Chimeric form of tumor necrosis factor-alpha has enhanced surface expression and antitumor activity. Cancer Gene Ther. 16: 53-64.
  27. el-Shami, K. M., E. Tzehoval, E. Vadai, M. Feldman, and L. Eisenbach. 1999. Induction of antitumor immunity with modified autologous cells expressing membrane-bound murine cytokines. J. Interferon. Cytokine. Res. 19: 1391-1401.
  28. Soo Hoo, W., K. A. Lundeen, J. R. Kohrumel, N. L. Pham, S. W. Brostoff, R. M. Bartholomew, and D. J. Carlo. 1999. Tumor cell surface expression of granulocyte-macrophage colony-stimulating factor elicits antitumor immunity and protects from tumor challenge in the P815 mouse mastocytoma tumor model. J. Immunol. 162: 7343-7349.
  29. Yei, S., R. M. Bartholomew, P. Pezzoli, A. Gutierrez, E. Gouveia, D. Bassett, W. Soo Hoo, and D. J. Carlo. 2002. Novel membrane-bound GM-CSF vaccines for the treatment of cancer: generation and evaluation of mbGM-CSF mouse B16F10 melanoma cell vaccine. Gene Ther. 9: 1302-1311.
  30. Chang, M. R., W. H. Lee, J. W. Choi, S. O. Park, S. G. Paik, and Y. S. Kim. 2005. Antitumor immunity induced by tumor cells engineered to express a membrane-bound form of IL-2. Exp. Mol. Med. 37: 240-249.
  31. Choi, J. W., H. Y. Lim, M. R. Chang, J. Y. Cheon, and Y. S. Kim. 2008. Anti-tumor immunity induced by tumor cells expresing a membrane-bound form of IL-2 and SDF-1. Animal Cells and Systems 12: 193-201.
  32. Ji, J., J. Li, L. M. Holmes, K. E. Burgin, X. Yu, T. E. Wagner, and Y. Wei. 2002. Glycoinositol phospholipid-anchored interleukin 2 but not secreted interleukin 2 inhibits melanoma tumor growth in mice. Mol. Cancer Ther. 1: 1019-1024.
  33. Ji, J., J. Li, L. M. Holmes, K. E. Burgin, X. Yu, T. E. Wagner, and Y. Wei. 2004. Synergistic anti-tumor effect of glycosylphosphatidylinositol- anchored IL-2 and IL-12. J. Gene Med. 6: 777-785.
  34. Sonn, C. H., H. R. Yoon, I. O. Seong, M.-R. Chang, Y. C. Kim, H. C. Kang, S. C. Suh, and Y. S. Kim. 2006. MethA Fibrosarcoma Cells Expressing Membrane-Bound Forms of IL-2 Enhance Antitumor Immunity. J. Microbiol. Biotech. 16: 1919-1927.
  35. Chakrabarti, R., Y. Chang, K. Song, and G. J. Prud'homme. 2004. Plasmids encoding membrane-bound IL-4 or IL-12 strongly costimulate DNA vaccination against carcinoembryonic antigen (CEA). Vaccine 22: 1199-1205.
  36. Kim, Y. S., C. H. Sonn, S. G. Paik, and A. L. Bothwell. 2000. Tumor cells expressing membrane-bound form of IL-4 induce antitumor immunity. Gene Ther. 7: 837-843.
  37. Cimino, A. M., P. Palaniswami, A. C. Kim, and P. Selvaraj. 2004. Cancer vaccine development: protein transfer of membrane- anchored cytokines and immunostimulatory molecules. Immunol. Res. 29: 231-240.
  38. Lim, H. Y., H. Y. Ju, H. Y. Chung, and Y. S. Kim. 2010. Antitumor effects of a tumor cell vaccine expressing a membrane- bound form of the IL-12 p35 subunit. Cancer Biol. Ther. 10: 336-343.
  39. Baek, S., S. J. Lee, M. J. Kim, and H. Lee. 2012. Dendritic Cell (DC) Vaccine in Mouse Lung Cancer Minimal Residual Model; Comparison of Monocyte-derived DC vs. Hematopoietic Stem Cell Derived-DC. Immune Netw. 12: 269-276.
  40. Cohen, J. 1995. IL-12 deaths: explanation and a puzzle. Science 270: 908.
  41. Okada, Y., N. Okada, H. Mizuguchi, K. Takahashi, T. Hayakawa, T. Mayumi, and N. Mizuno. 2004. Optimization of antitumor efficacy and safety of in vivo cytokine gene therapy using RGD fiber-mutant adenovirus vector for preexisting murine melanoma. Biochim. Biophys. Acta 1670: 172-180.
  42. Sun, Y., K. Jurgovsky, P. Möller, S. Alijagic, T. Dorbic, J. Georgieva, B. Wittig, and D. Schadendorf. 1998. Vaccination with IL-12 gene-modified autologous melanoma cells: preclinical results and a first clinical phase I study. Gene Ther. 5: 481-490.