DOI QR코드

DOI QR Code

Factors influencing a Photocatalytic System in Circulating Batch Mode: Photocatalyst Dosage, DO, Retention Time and Metal Impurities

순환회분식 광촉매시스템의 영향인자 연구: 광촉매 주입량, 용존산소, 체류시간,전자포획 첨가금속

  • Kim, Il-Kyu (Department of Environmental Engineering, Pukyong National University)
  • Received : 2012.12.07
  • Accepted : 2013.02.06
  • Published : 2013.02.15

Abstract

A selected halogenated organic contaminant, monochlorophenol was successfully degraded by photocatalytic reaction in a circulating batch system. The photocatalytic degradation in most cases follows first-order kinetics. The photocatalytic reaction rate increased in the $TiO_2$ dosage range of 0.1 g/L to 0.4 g/L, then decreased with further increase of the dosage. Also the degradation rate increased over the range of the retention time from 0.49 min. to 0.94 min., then decreased with further increase of the retention time in the circulating batch reactor. The photocatalytic activity was enhanced by addition of metal impurities, platinum(Pt) and palladium(Pd) onto the photocatalysts. The photocatalytic degradation rate increased with the increase of Pt and Pd in the content range of 0 to 2wt %, then decreased with further increase of the metal contents. Therefore the metal loading to $TiO_2$ influence the degradation rate of a halogenated organic compound by acting as electron traps, consequently reducing the electron/positive hole pair recombination rate.

Acknowledgement

Supported by : Korea Meteorological Administration

References

  1. Chen D. and Ray A. K. (1999) "Photocatalytic kinetics of phenol and its derivatives over UV irradiated $TiO_{2}$", Applied Catalysis B: Environ., 23, 143-157 https://doi.org/10.1016/S0926-3373(99)00068-5
  2. Bamwenda G. R., Susumu T., Toshiko N. and Masatake H. (1995) "Photoassisted gydrogen production from a water-ethanol solution : a comparison of activities of Au-$TiO_{2}$ and Pt-$TiO_{2}$", J. Photochem. Photobio. A : Chem., 89, 177-189 https://doi.org/10.1016/1010-6030(95)04039-I
  3. Barbara B., Cavicchioli A., Riva E., Zanoni L., Bignoli F. and Renato I. B. (1995) "Pilotplant- scale photodegradation of phenol in aqueous solution by photocatalytic membranes immobilizing titanium dioxide", Chemosphere, 30(10), 1861-1874 https://doi.org/10.1016/0045-6535(95)00067-I
  4. Chen D. and Ray A. K. (1998) "Photodegradation kinetics of 4-nitrophenol in $TiO_{2}$ suspension", Wat. Res., 32(11), 3223-3234 https://doi.org/10.1016/S0043-1354(98)00118-3
  5. Hong S. H. (2001) Synthesis, Characterization and Photocatalytic Properties of Fe(III)-doped $TiO_{2}$, Korea University Master Thesis.
  6. Choi W., Termin A. and Hoffmann M. R. (1994) "The role of metal ion dopants in quantum- sized $TiO_{2}$ : Correlation between photoreactivity and charge carrier recombination dynamics", J. Phys. Chem., 98, 13669-13679 https://doi.org/10.1021/j100102a038
  7. Crittenden J. C., Junbiao L., David W. H. and David L. P. (1997) "Photocatalytic oxidation of chlorinated hydrocarbons in water", Wat. Res. , 31(3), 429-438 https://doi.org/10.1016/S0043-1354(96)00267-9
  8. Gamil A., Saleh G. and Studnicki L. H. (2003) "Comparative photocatalytic degradation using natural and artificial UV-light of chlorophenol as a representative compound in refinery wastewater", J. Photochem. Photobio. A:Chem., 157, 103-109 https://doi.org/10.1016/S1010-6030(03)00038-8
  9. Hufschmidt D., Bahnemann D., Testa J. J., Emilio C. A. and Litter M. I. (2002) "Enhancement of the photocatalytic activity of various $TiO_{2}$ materials by platinisation", J. Photochem. Photobio. A : Chem., 148, 223-231 https://doi.org/10.1016/S1010-6030(02)00048-5
  10. Hussain A.-E. and Serpone N. (1988) "Kinetic studies in heterogeneous photocatalysts. 1. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over $TiO_{2}$ supported on a glass matrix", J. Phys. Chem., 92, 5726-5731 https://doi.org/10.1021/j100331a036
  11. Hussain A.-E. and Serpone N. (1989) "Kinetic studies in heterogeneous photocatalysis. 2. $TiO_{2}$-mediated degradation of 4-chlorophenol alone and in a three-component mixture of 4-chlorophenol, 2,4-dichlorophenol, and 2,4,5-trichlorophenol in airequilibrated aqueous media", Langmuir, 5, 250-255 https://doi.org/10.1021/la00085a048
  12. Jung H. B., Kong I. C., Lee E. S. (1998) Characteristics of Reductive Dechlorination of Chlorophenols in Unacclimated and Acclimated Anaerobic Sludges, J. of KSEE, 20(9), pp1279-1286.
  13. Kapoor M. P., Yuichi I., Koji K. and Yasuyuki M. (2003) "Catalytic methanol decomposition over palladium deposited on thermally stable mesoporous titanium oxide", J. Molecular Catalysis A: Chem., 198, 303-308 https://doi.org/10.1016/S1381-1169(02)00732-X
  14. Jung K.-S. and Lee H. I. (1997) "Photocatalysis and its application", J. Korean Chemical Society, 41(12), 682-710
  15. Jung Y. K., Kim J. O. (1994) Degradation of Phenol by "$TiO_{2}$ Ceramic Membrane+UV+$H_2O_2$"AOP, J. Korean Society of Civil Engineers, 14(3), pp645-654.
  16. Kang J. W. (1999) AOT : Advanced Oxidation Technology for Application of Water Treatment, Chemistry World, 39(6), pp35-50.
  17. Kim I. -K., Huang C. P. and Chiu P. C.(2001), "Sonochmical decomposition of dibenzothiophene in aqueous solution", Wat. Res., 24(18), 4370-4378
  18. Kim J. M., Lee S. W., Lee J. S., Park J. W., Shim J. W. (2003) A Study on Kinetic Adsorption of P-chlorophenol by Activated Carbons, Applied Chemistry, 7(1), pp285-288.
  19. Ku Y., Leu R.-M. and Lee K.-C. (1996), " Decomposition of 2-chlorophenol in aqueous solution by UV irradiation with the presence of titanium dioxide", Wat. Res., 30(11), 2569-2578 https://doi.org/10.1016/S0043-1354(96)00147-9
  20. Lee H. S., Kim K. H., Kang S. K., Lee W. M. (2004) R&D Trend and Information Analysis of Nano Semiconductor Photocatalyst, Prospectives of Industrial Chemistry, 7(2), pp27-39.
  21. Li F. B. and Li X. Z. (2002) "The enhancement of photodegradation efficiency using Pt-$TiO_{2}$ catalyst", Chemosphere, 48, 1103-1111 https://doi.org/10.1016/S0045-6535(02)00201-1
  22. Li W., Shah S. I., Huang C. P., Jung O. J. and Ni C. (2002) "Metallorganic chemical vapor deposition and characterization of $TiO_{2}$ nanoparticles", Mater. Sci. Engine., B96, 247-253
  23. Nam W., Kim J. and Han G. (2002) "Photocatalytic oxidation of methyl orange in a threephase fluidized bed reactor", Chemophere, 47, 1019-1024 https://doi.org/10.1016/S0045-6535(01)00327-7
  24. Linsebigler A. L., Lu G. and Yates, Jr. J. T. (1995) "Photocatalysis on $TiO_{2}$ surfaces : Principles, Mechanisms and Selected Results", Chem. Rev., 95, 735-758 https://doi.org/10.1021/cr00035a013
  25. Matthews R. W. (1987) "Photooxidation of organic impurities in water using thin films of titanium dioxide", J. Phys. Chem., 91, 3328-3333 https://doi.org/10.1021/j100296a044
  26. Moonsiri M., Rangsunvigit P., Chavadej S. and Gulari E. (2004) "Effects of Pt and Ag on the photocatalytic degradation of 4-chlorophenol and its by-products", Chem. Engine. J., 97, 241-248 https://doi.org/10.1016/j.cej.2003.05.003
  27. Prashant K. and Meisel D. (2002) "Nanoparticles in advanced oxidation processes", Current Opinion in Colloid & Interface Science, 7, 282-287 https://doi.org/10.1016/S1359-0294(02)00069-9
  28. Pyo M. K. (2002), Photodegradation of 4-Chlorophenol with Mn-doped $TiO_{2}$ Photocatalysts, Korea University Master Thesis.
  29. Ryu J. , Kim H. K., Won S. H., Hwang S. M., Kim S. M., Kim N. G. (2003) Liquid-phase Adsorption Equilibrium Characteristics of p-Chlorophenol and 2,4-Dichlorophenol by Synthetic Polymeric Resin Adsorbents, J. Korean Ind. Eng. Chem., 14(5), pp650-656.
  30. Sclafani A. and Herrmann J. M. (1996) "Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms in pure liquid organic phases and in aqueous solutions", J. Phys. Chem., 100, 13655-13661 https://doi.org/10.1021/jp9533584
  31. Shin H. O., Cho Y. H., Kwon O. S. (1997) Characterization of Anaerobic Degradation of Chlorophenols by the Anaerobic Sludges and Leachates, J. KSWQ, 13(2), pp155-164.
  32. Yue B., Zhou Y., Xu J., Wu Z., Zhang X., Zou Y. and Jin S. (2002) "Photocatalytic degradation of aqueous 4-chlorophenol by silicaimmobilized polyoxometalates", Environ. Sci. Technol., 36, 1325-1329 https://doi.org/10.1021/es011038u
  33. Theurich J., Lindner M., and Bahnemann D. W. (1996) "Photocatalytic Degradation of 4-Chlorophenol in Aerated Aqueous Titanium Dioxide Suspensions : A Kinetic and Mechanistic Study", Langmuir, 12, 6368-6376 https://doi.org/10.1021/la960228t
  34. Vinodgopal K., Stafford U., Gray K. A., and Kamat P. V. (1994) "Electrochemically assisted photocatalysis. 2. The role of oxygen and reaction intermediates in the degradation of 4-chlorophenol on immobilized $TiO_{2}$ particulate films", J. Phys. Chem,. 98, 6797-6803 https://doi.org/10.1021/j100078a023
  35. Wu C., Deng X., Hua W. and Gao Z. (2004) "Investigation on the synergetic effect between anatase and rutile nanoparticles in gas-phase photocatalytic oxidations", Catal. Today, 94, 863-869
  36. Zang L., Macyk W., Lange C., Maier W. F., Antonius C., Meissner D. and Kisch H. (2000), "Visible-light detoxification and charge gereration by transition metal chloride modified titania", Chem. Eur. J., 6(2), 379-384 https://doi.org/10.1002/(SICI)1521-3765(20000117)6:2<379::AID-CHEM379>3.0.CO;2-Z
  37. Zhang T., Toshiyuki O., Satoshi H., Hisao H., Jincai Z. and Serpone N. (2002) "Photocatalyzed N-demothylation and degradation of methylene blue in titania dispersions exposed to oncentrated sunlight", Sol. Energy Mater. & Sol. Cell., 73, 287-303 https://doi.org/10.1016/S0927-0248(01)00215-X
  38. Zhang T., Toshiyuki O., Satoshi H., Jincai Z., Serpone N. and Hidaka H. (2003) "Photocatalytic decomposition of the sodium dodecylbenzene sulfonate surfactant in aqueous titania suspensions exposed to highly concentrated solar radiation and effects of additives", Applied Catalysis B : Environ., 42, 13-24 https://doi.org/10.1016/S0926-3373(02)00189-3