Degradation of Taste-and-Odor Compounds and Toxins in Water Supply Source Using Plasma

플라즈마를 이용한 상수원 이취미 및 독성물질 분해 연구

  • Jo, Jin Oh (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Kim, Sang Don (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Lim, Byung-Jin (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Hyun, Young Jin (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University)
  • 조진오 (제주대학교 생명화학공학과) ;
  • 김상돈 (국립환경과학원 영산강물환경연구소) ;
  • 임병진 (국립환경과학원 영산강물환경연구소) ;
  • 현영진 (제주대학교 생명화학공학과) ;
  • 목영선 (제주대학교 생명화학공학과)
  • Published : 2013.10.31

Abstract

This study investigated the degradation of taste-and-odor compounds and toxins using dielectric barrier discharge plasma. The degradation of taste-and-odor compounds was conducted on geosmin and 2-methyl isoborneol (2-MIB), and the toxins investigated were microcystin-LR (MC-LR), microcystin-RR (MC-RR), microcystin-YR (MC-YR) and anatoxin-a. Largely depending on the type of gas fed to the plasma reactor, the degradation efficiencies of the taste-and-odor compounds decreased in order of oxygen (100%) > dry air (96%) > nitrogen (5%) for geosmin and in order of oxygen (100%) > dry air (94%) > nitrogen (2%) for 2-MIB on the basis of 150 s reaction time. This result suggests that the oxidative reactive species generated during plasma treatment, especially long-lived ozone, are mainly responsible for the degradation of these compounds. When using oxygen as the feed gas, geosmin and 2-MIB were totally degraded within 150 s, microcystins within 10 s, and anatoxin-a within 30 s. It was found that the taste-and-odor compounds and toxins were degraded more rapidly in real lake water than in distilled water.

References

  1. I. R. Falconer and A. R. Humpage, Cyanobacterial (Blue-Green Algal) toxins in water supplies: cylindrospermopsins, Environ. Toxicol., 21, 299 (2006). https://doi.org/10.1002/tox.20194
  2. F. A. Momani, Degradation of cyanobacteria anatoxin-a by advanced oxidation processes, Sep. Purif. Technol., 57, 85 (2007). https://doi.org/10.1016/j.seppur.2007.03.008
  3. L. A. Lawton, P. K. J. Robertson, R. F. Robertson, and F. G. Bruce, The destruction of 2-methylisoborneol and geosmin using titanium dioxide photocatalysis, Appl. Catal. B: Environ., 44, 9 (2003). https://doi.org/10.1016/S0926-3373(03)00005-5
  4. X. Liu, Z. Chen, N. Zhou, J. Shen, and M. Ye, Degradation and detoxification of microcystin-LR in drinking water by sequential use of UV and ozone, J. Environ. Sci., 22, 1897 (2010). https://doi.org/10.1016/S1001-0742(09)60336-3
  5. V. K. Sharma, T. M. Triantis, M. G. Antoniou, X. He, M. Pelaez, C. Han, W. Song, K. E. Oshea, A. A. de la Cruz, T. Kaloudis, A. Hiskia, and D. D. Dionysiou, Destruction of microcystins by conventional and advanced oxidation processes: a review, Sep. Purif. Technol., 91, 3 (2012). https://doi.org/10.1016/j.seppur.2012.02.018
  6. H. Zhang, Q. Huang, Z. Ke, L. Yang, X. Wang, and Z. Yu, Degradation of microcystin-LR in water by glow discharge plasma oxidation at the gas-solution interface and its safety evaluation, Water Res., 46, 6554 (2012). https://doi.org/10.1016/j.watres.2012.09.041
  7. L. Ho, P. Lambling, H. Bustamante, P. Duker, and G. Newcombe, Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies, Water Res., 45, 2954 (2011). https://doi.org/10.1016/j.watres.2011.03.014
  8. X. Chen, X. Yang, L. Yang, B. Xiao, X. Wu, J. Wang, and H. Wan, An effective pathway for the removal of microcystin LR via anoxic biodegradation in lake sediments, Water Res., 44, 1884 (2010). https://doi.org/10.1016/j.watres.2009.11.025
  9. K. S. Kim, C. S. Yang, and Y. S. Mok, Degradation of veterinary antibiotics by dielectric barrier discharge plasma, Chem. Eng. J., 219, 19 (2013). https://doi.org/10.1016/j.cej.2012.12.079
  10. L. A. Rosocha, Nonthermal plasma applications to the environment: gaseous electronics and power conditioning, IEEE Trans. Plasma Sci., 33, 129 (2005). https://doi.org/10.1109/TPS.2004.841800
  11. U. Kogelschatz, Dielectric-barrier discharges: their history, discharge physics, and industrial applications, Plasma Chem. Plasma Proc., 23, 1 (2003). https://doi.org/10.1023/A:1022470901385
  12. R. Zhang, L. Wang, C. Zhang, Y. Nie, Y. Wu, and Z. Guan, Spectroscopic investigation of the bipolar pulsed discharge in water- air mixture, IEEE Trans. Plasma Sci., 34, 1033 (2006). https://doi.org/10.1109/TPS.2006.873232
  13. Z. Machala, M. Janda, K. Hensel, I. Jedlovsky, L. Lestinska, V. Foltin, V. Martisovits, and M. Morvova, Spectroscopy of atmospheric pressure air jet plasma in transverse arc discharge, J. Mol. Spectrosc., 243, 194 (2007). https://doi.org/10.1016/j.jms.2007.03.001
  14. B. N. Nalinakumari, Methylisoborneol (MIB) and Geosmin Oxidation during Ozonation, Ph.D. Thesis, Arizona State University, Arizona, USA (2002).
  15. S. Popiel, T. Nalepa, D. Dzierzak, R. Stankiewicz, and Z. Witkiewicz, Rate of dibutylsulfide decomposition by ozonation and the $O_3/H_2O_2$ advanced oxidation process, J. Hazard. Mater., 164, 1364 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.049
  16. B. Yuan, D. Xu, F. Li, and M. L. Fu, Removal efficiency and possible pathway of odor compounds (2-methylisoborneol and geosmin) by ozonation, Sep. Purif. Technol. (2013) http://dx.doi.org/10.1016/j.seppur.2013.04.029.
  17. K. Kutschera, H. Bornick, and E. Worch, Photoinitiated oxidation of geosmin and 2-methylisoborneol by irradiation with 254 nm and 185 nm UV light, Water Res., 43, 2224 (2009). https://doi.org/10.1016/j.watres.2009.02.015
  18. C. M. Sharpless, D. A. Seibold, and K. G. Linden, Nitrate photosensitized degradation of atrazine during UV water treatment, Aquat. Sci., 65, 359 (2003). https://doi.org/10.1007/s00027-003-0674-5
  19. S. Brooke, G. Newcombe, B. Nicholson, and G. Klass, Decrease in toxicity of microcystins LA and LR in drinking water by ozonation, Toxicon, 48, 1054 (2006). https://doi.org/10.1016/j.toxicon.2006.08.010
  20. L. Y. Wu, S. R. Tong, W. G. Wang, and M. F. Ge, Effects of temperature on the heterogeneous oxidation of sulfur dioxide by ozone on calcium carbonate, Atmos. Chem. Phys., 11, 6593 (2011). https://doi.org/10.5194/acp-11-6593-2011
  21. G. D. Onstad, S. Strauch, J. Meriluoto, G. A. Codd, and U. von Gunten, Selective oxidation of key functional groups in cyanotoxins during drinking water ozonation, Environ. Sci. Technol., 41, 4397 (2007). https://doi.org/10.1021/es0625327
  22. H. F. Miao, F. Qin, G. J. Tao, W. Y. Tao, and W. Q. Ruan, Detoxification and degradation of microcystin-LR and -RR by ozonation, Chemosphere, 79, 355 (2010). https://doi.org/10.1016/j.chemosphere.2010.02.024
  23. W. Song, S. Bardowell, and K. E. O'shea, Mechanistic study and the influence of oxygen on the photosensitized transformations of microcystins (cyanotoxins), Environ. Sci. Technol., 41, 5336 (2007). https://doi.org/10.1021/es063066o
  24. X. He, M. Pelaez, J. A. Westrick, K. E. O'Shea, A. Hiskia, T. Triantis, T. Kaloudis, M. I. Stefan, A. A. de la Cruz, and D. D. Dionysiou, Efficient removal of microcystin-LR by $UV-C/H_2O_2$ in synthetic and natural water samples, Water Res., 46, 1501 (2012). https://doi.org/10.1016/j.watres.2011.11.009
  25. Y. Zhong, X. Jin, R. Qiao, X. Qi, and Y. Zhuang, Destruction of microcystin-RR by Fenton oxidation, J. Hazard. Mater., 167, 1114 (2009). https://doi.org/10.1016/j.jhazmat.2009.01.117
  26. W. Song and K. E. O'shea, Ultrasonically induced degradation of 2-methylisoborneol and geosmin, Water Res., 41, 2672 (2007). https://doi.org/10.1016/j.watres.2007.02.041
  27. E. Rodriguez, M. E. Majado, J. Meriluoto, and J. L. Acero, Oxidation of microcystins by permanganate: reaction kinetics and implications for water treatment, Water Res., 41, 102 (2007). https://doi.org/10.1016/j.watres.2006.10.004
  28. B. L. Yuan, J. H. Qu, and M. L. Fu, Removal of cyanobacterial microcystin-LR by ferrate oxidation-coagulation, Toxicon, 40, 1129 (2002). https://doi.org/10.1016/S0041-0101(02)00112-5