Study of Lithium Ion Capacitors Using Carbonaceous Electrode Utilized for Anode in Lithium Ion Batteries

이차전지 음극용 탄소 전극을 이용한 리튬이온 커패시터 연구

  • Published : 2013.10.31


The most common carbonaceous anode materials of lithium ion batteries (natural graphite, artificial graphite, hard carbon, and mesocarbon microbeads) were utilized as an electrode in lithium ion capacitors. It could be able to enhance the energy density of capacitors due to the intercalation of lithium ion. In this work, the properties of capacitors using the symmetric electrode were measured by organizing coin cell typed capacitors. Also, we made other capacitors having pre-intercalated lithium ions at one side of the electrode. The results of electrochemical measurements for these capacitors show that the storage capacitance was appeared. In other words, if the migration of lithium ions is supplied continuously in the electrolytes, lithium ions can be diffused into the carbonaceous materials. And it results in the improvement of capacitance compared to only using symmetric carbonaceous electrodes. Also, we conducted the same measurement with graphene oxide having a the large specific area in the same condition. Herein, we recognized that the large specific area is extremely important for supercapacitors.


  1. L. Lu, X. Han, J. Li, J. Hua, and M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles, J. Power Sources, 226, 272 (2013).
  2. Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, and C. Chen, Thermal runaway caused fire and explosion of lithium ion battery, J. Power Sources, 208, 210 (2012).
  3. A. Krause, P. Kossyrev, M. Oljaca, S. Passerini, M. Winter, and A. Balducci, Electrochemical double layer capacitor and lithium-ion capacitor based oncarbon black, J. Power Sources, 196, 8836 (2011).
  4. H. B. Gu, J. U. Kim, H. W. Song, G. C. Park, and B. K. Park, Fluorination effect of activated carbon electrodes on the electrochemicalperformance of electric double layer capacitors, Electrochim. Acta, 45, 1533 (2000).
  5. M. J. Jung, E. G. Jeong, S. Kim, S. I. Lee, J. S. Yoo, and Y. S. Lee, Fluorination effect of activated carbon electrodes on the electrochemical performance of electric double layer capacitors, J. Fluorine Chem., 132, 1127 (2011).
  6. S. R. Sivakkumar and A. G. Pandolfo, Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode, Electrochim. Acta, 65, 280 (2012).
  7. W. J. Cao and J. P. Zheng, Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes, J. Power Sources, 213, 180 (2012).
  8. R. Mukherjee, R. Krishnan, T. M. Lu, and N. Koratkar, Nanostructuredelectrodesforhigh-powerlithiumion batteries, Nano Energy, 1, 518 (2012).
  9. D. R. Dreyer, S. J. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39, 228 (2010).
  10. I. T. Kim, M. Egashira, N. Yoshimoto, and M. Morita, On the electric double-layer structure at carbon electrode/organic electrolytesolution interface analyzed by ac impedance and electrochemical quartz-crystalmicrobalance responses, Electrochim. Acta, 56, 7319 (2011).
  11. R. Chandrasekaran, M. Koh, A. Yamauchi, and M. Ishikawa, Electrochemical cell studies based on non-aqueous magnesium electrolyte forelectric double layer capacitor applications, J. Power Sources, 195, 662 (2010).
  12. X. Du, P. Guo, H. Song, and X. Chen, Graphene nanosheets as electrode material for electric double-layer capacitors, Electrochim. Acta, 55, 4812 (2010).