Creating Electrochemical Sensors Utilizing Ion Transfer Reactions Across Micro-liquid/liquid Interfaces

마이크로-액체/액체 계면에서의 이온 이동 반응을 이용한 전기화학 센서 개발

  • Kim, Hye Rim (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Baek, Seung Hee (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University) ;
  • Jin, Hye (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
  • 김혜림 (경북대학교 자연과학대학 화학과) ;
  • 백승희 (경북대학교 자연과학대학 화학과) ;
  • 이혜진 (경북대학교 자연과학대학 화학과)
  • Published : 2013.10.31

Abstract

Electrochemical studies on charge transfer reactions across the interface between two immiscible electrolyte solutions (ITIES) have greatly attracted researcher's attentions due to their wide applicability in research fields such as ion sensing and biosensing, modeling of biomembranes, pharmacokinetics, phase-transfer catalysis, fuel generation and solar energy conversion. In particular, there have been extensive efforts made on developing sensing platforms for ionic species and biomolecules via gelifying one of the liquid phases to improve mechanical stability in addition to creating microscale interfaces to reduce ohmic loss. In this review, we will mainly discuss on the basic principles, applications and future aspects of various sensing platforms utilizing ion transfer reactions across the ITIES. The ITIES is classified into four types : (i) a conventional liquid/liquid interface, (ii) a micropipette supported liquid/liquid interface, (iii) a single microhole or an array of microholes supported liquid/ liquid interface on a thin polymer film, and (iv) a microhole array liquid/liquid interface on a silicon membrane. Research efforts on developing ion selective sensors for water pollutants as well as biomolecule sensors will be highlighted based on the use of direct and assisted ion transfer reactions across these different ITIES configurations.

References

  1. W. Nernst and E. H. Riesenfield, Ann. Phys., 8, 600 (1902).
  2. C. Gavach, T. Mlodnicka, and J. Guastalla, Compt. Rend. Acad. Sci. Ser. C, 266, 1196 (1968).
  3. C. Gavach and F. Henry, Chronopotentiometric Investigation of the Diffusion Overvoltage at the Interface between Two Non-miscible Solutions: I. Aqueous Solution-Tetrabutylammonium Ion Specific Liquid Membrane, J. Electroanal. Chem., 54, 361 (1974). https://doi.org/10.1016/S0022-0728(74)80409-2
  4. Z. Samec, V. Marecek, and J. Weber, Charge Transfer between Two Immiscible Electrolyte Solutions: Part II. The Investigation of $Cs^+$ Ion Transfer Across the Nitrobenzene/Water Interface by Cyclic Voltammetry with IR Drop Compensation, J. Electroanal. Chem., 100, 841 (1979). https://doi.org/10.1016/S0022-0728(79)80203-X
  5. H. J. Lee, Ph. D. Dissertation, Ion Transfer Reactions Across Micro-liquid/liquid Interfaces: Fundamental Studies and Applications, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland (1999).
  6. A. Molina, C. Serna, J. A. Ortuno, and E. Torralba, Studies of Ion Transfer Across Liquid Membranes by Electrochemical Techniques, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 108, 126 (2012). https://doi.org/10.1039/c2pc90005j
  7. Z. Samec, Dynamic Electrochemistry at the Interface between Two Immiscible Electrolytes, Electrochim. Acta, 84, 21 (2012). https://doi.org/10.1016/j.electacta.2012.03.118
  8. G. Herzog and V. Beni, Stripping Voltammetry at Micro-interface Arrays: A Review, Anal. Chim. Acta, 769, 10 (2013). https://doi.org/10.1016/j.aca.2012.12.031
  9. D. W. M. Arrigan, Voltammetry of Proteins at Liquid-liquid Interfaces, Annu. Rep. Prog. Chem., Sect. C: Phys. Chem., 109, 167 (2013). https://doi.org/10.1039/c3pc90007j
  10. J. Koryta, Electrochemical Polarization Phenomena at the Interface of Two Immiscible Electrolyte Solutions, Electrochim. Acta, 24, 293 (1979). https://doi.org/10.1016/0013-4686(79)85048-3
  11. E. Bakker and E. Pretsch, Modern Potentiometry, Angew. Chem. Int. Ed., 46, 5660 (2007). https://doi.org/10.1002/anie.200605068
  12. J. Koryta and V. Marecek, Electrolysis at the Interface of Two Immiscible Electrolyte Solutions: Determination of Ionophores, Mikrochim. Acta, 1, 225 (1990).
  13. Z. Samec, E. Samcova, and H. H. Girault, Ion Amperometry at the Interface between Two Immiscible Electrolyte Solutions in View of Realizing the Amperometric Ion-selective Electrode, Talanta., 63, 21 (2004). https://doi.org/10.1016/j.talanta.2003.11.023
  14. S. Liu, Q. Li, and Y. Shao, Electrochemistry at Micro- and Nanoscopic Liquid/Liquid Interfaces, Chem. Soc. Rev., 40, 2236 (2011). https://doi.org/10.1039/c0cs00168f
  15. P. Peljo and H. H. Girault, "Liquid/Liquid Interfaces, Electrochemistry at", Encyclopedia of Analytical Chemistry, John Wiley & Sons, Chichester (2012).
  16. G. Taylor and H. H. Girault, Ion Transfer Reactions Across a Liquid-liquid Interface Supported on a Micropipette Tip, J. Electroanal. Chem., 208, 179 (1986). https://doi.org/10.1016/0022-0728(86)90307-4
  17. R. Zazpe, C. Hibert, J. O'Brien, Y. H. Lanyon, and D. W. M. Arrigan, Ion-transfer Voltammetry at Silicon Membrane-based Arrays of Micro-liquid-liquid Interfaces, Lab Chip, 7, 1732 (2007). https://doi.org/10.1039/b712601h
  18. X. Meng, Z. Liang, B. Li, X. Xu, Q. Li, W. Zhao, S. Xie, and Y. Shao, Investigation of Transfer Behavior of Protonated Pyridine at the Liquid/Liquid Interface Using Dual Micropipettes, J. Electroanal. Chem., 656, 125 (2011). https://doi.org/10.1016/j.jelechem.2010.12.017
  19. F. Silva, M. J. Sousa, and C. M. Pereira, Electrochemical Study of Aqueous-organic Gel Micro-interfaces, Electrochim. Acta, 42, 3095 (1997). https://doi.org/10.1016/S0013-4686(97)90000-1
  20. H. J. Lee, C. Beriet, and H. H. Girault, Amperometric Detection of Alkali Metal Ions on Micro-fabricated Composite Polymer Membranes, J. Electroanal. Chem., 453, 211 (1998). https://doi.org/10.1016/S0022-0728(98)00171-5
  21. Y. Tong, P. Sun, Z. Zhang, and Y. Shao, Fabrication of Agar-gel Microelectrodes and Their Application in the Study of Ion Transfer Across the Agar-water/1,2-Dichloroethane Interface, J. Electroanal. Chem., 504, 52 (2001). https://doi.org/10.1016/S0022-0728(01)00424-7
  22. R. Ishimatsu, A. Izadyar, B. Kabagambe, Y. Kim, J. Kim, and S. Amemiya, Electrochemical Mechanism of Ion-ionophore Recognition at Plasticized Polymer Membrane/Water Interfaces, J. Am. Chem. Soc., 133, 16300 (2011). https://doi.org/10.1021/ja207297q
  23. H. Katano and M. Senda, Stripping Voltammetry of Mercury(II) and Lead(II) Ions at Liquid/Liquid Interface, Anal. Sci., 14, 63 (1998). https://doi.org/10.2116/analsci.14.63
  24. H. J. Lee, G. Lagger, C. M. Pereira, A. F. Silva, and H. H. Girault, Amperometric Tape Ion Sensors for Cadmium(II) Ion Analysis, Talanta., 78, 66 (2009). https://doi.org/10.1016/j.talanta.2008.10.059
  25. M. M. Hossain, S. N. Faisal, C. S. Kim, H. J. Cha, S. C. Nam, and H. J. Lee, Amperometric Proton Selective Strip-sensors with a Microelliptic Liquid/Gel Interface for Organophosphate Neurotoxins, Electrochem. Commun., 13, 611 (2011). https://doi.org/10.1016/j.elecom.2011.03.024
  26. M. M. Hossain, S. H. Lee, H. H. Girault, V. Devaud, and H. J. Lee, Voltammetric Studies of Hexachromic Anion Transfer Reactions Across Micro-Water/Polyvinylchloride-2-nitrophenyloctylether Gel Interfaces for Sensing Applications, Electrochim. Acta, 82, 12 (2012). https://doi.org/10.1016/j.electacta.2012.03.127
  27. I. Hatay, B. Su, F. Li, R. Partovi-Nia, H. Vrubel, X. Hu, M. Ersoz, and H. H. Girault, Hydrogen Evolution at Liquid-liquid Interfaces, Angew. Chem., 121, 5241 (2009). https://doi.org/10.1002/ange.200901757
  28. F. Marken, J. D. Watkins, and A. M. Collins, Ion-transfer- and Photo-electrochemistry at Liquid/liquid/solid Electrode Triple Phase Boundary Junctions: Perspectives, Phys. Chem. Chem. Phys., 13, 10036 (2011). https://doi.org/10.1039/c1cp20375d
  29. B. Su, I. Hatay, A. Trojanek, Z. Samec, T. Khoury, C. P. Gros, J. M. Barbe, A. Daina, P.-A. Carrupt, and H. H. Girault, Molecular Electrocatalysis for Oxygen Reduction by Cobalt Porphyrins Adsorbed at Liquid/Liquid Interfaces, J. Am. Chem. Soc., 132, 2655 (2010). https://doi.org/10.1021/ja908488s
  30. D. Schaming, M. Hojeij, N. Younan, H. Nagatani, H. J. Lee, and H. H. Girault, Photocurrents at Polarized Liquid/Liquid Interfaces Enhanced by a Gold Nanoparticle Film, Phys. Chem. Chem. Phys., 13, 17704 (2011). https://doi.org/10.1039/c1cp22072a
  31. A. J. Bard and L. R. Faulkner, Electrochemical Methods : Fundamentals and Applications, 2nd Ed., John Wiley & Sons, New York (2001).
  32. P. Lopes and R. Kataky, Chiral Interactions of the Drug Propranolol and ${\alpha}_1$-Acid-glycoprotein at a Micro Liquid-liquid Interface, Anal. Chem., 84, 2299 (2012). https://doi.org/10.1021/ac2029425
  33. A. A. Stewart, G. Taylor, H. H. Girault, and J. McAleer, Voltammetry at MicroITIES Supported at the Tip of a Micropipette : Part I. Linear Sweep Voltammetry, J. Electroanal. Chem., 296, 491 (1990). https://doi.org/10.1016/0022-0728(90)87268-O
  34. T. Ohkouchi, T. Kakutani, T. Osakai, and M. Senda, Voltammetry with an Ion-selective Microelectrode Based on Polarizable Oil/Water Interface, Anal. Sci., 7, 371 (1991). https://doi.org/10.2116/analsci.7.371
  35. B. Huang, B. Yu, P. Li, M. Jiang, Y. Bi, and S. Wu, Vitamin B1 Ion-selective Microelectrode Based on a Liquid-liquid Interface at the Tip of a Micropipette, Anal. Chim. Acta, 312, 329 (1995). https://doi.org/10.1016/0003-2670(95)00217-N
  36. D. Zhan, S. Mao, Q. Zhao, Z. Chen, H. Hu, P. Jing, M. Zhang, Z. Zhu, and Y. Shao, Electrochemical Investigation of Dopamine at the Water/1,2-Dichloroethane Interface, Anal. Chem., 76, 4128 (2004). https://doi.org/10.1021/ac035339t
  37. B. Liu and M. V. Mirkin, Electrochemistry at Microscopic Liquidliquid Interfaces, Electroanalysis, 12, 1433 (2000). https://doi.org/10.1002/1521-4109(200012)12:18<1433::AID-ELAN1433>3.0.CO;2-2
  38. C. M. Pereira and F. Silva, Square Wave Voltammetry with Arrays of Liquid/Liquid Microinterfaces, Electroanalysis, 6, 1034 (1994). https://doi.org/10.1002/elan.1140061120
  39. M. D. Osborne and H. H. Girault, The Micro Water/1,2-Dichloroethane Interface as a Transducer for Creatinine Assay, Mikrochim. Acta, 117, 175 (1995). https://doi.org/10.1007/BF01244888
  40. M. D. Osborne and H. H. Girault, The Liquid-liquid Micro-interface for the Amperometric Detection of Urea, Electroanalysis, 7, 714 (1995). https://doi.org/10.1002/elan.1140070804
  41. S. Wilke, H. Wang, M. Muraczewska, and H. Muller, Amperometric Detection of Heavy Metal Ions in Ion Pair Chromatography at an Array of Water/Nitrobenzene Micro Interfaces, Fresen. J. Anal. Chem., 356, 233 (1996).
  42. G. Herzog, V. Kam, and D. W. M. Arrigan, Electrochemical Behaviour of Haemoglobin at the Liquid/Liquid Interface, Electrochim. Acta, 53, 7204 (2008). https://doi.org/10.1016/j.electacta.2008.04.072
  43. M. D. Scanlon, G. Herzog, and D. W. M. Arrigan, Electrochemical Detection of Oligopeptides at Silicon-fabricated Micro-Liquid/Liquid Interfaces, Anal. Chem., 80, 5743 (2008). https://doi.org/10.1021/ac800089p
  44. A. Berduque, R. Zazpe, and D. W. M. Arrigan, Electrochemical Detection of Dopamine Using Arrays of Liquid-liquid Micro-interfaces Created within Micromachined Silicon Membranes, Anal. Chim. Acta, 611, 156 (2008). https://doi.org/10.1016/j.aca.2008.01.077
  45. G. Herzog, A. Roger, D. Sheehan, and D. W. M. Arrigan, Ion-transfer Voltammetric Behavior of Protein Digests at Liquid/Liquid Interfaces, Anal. Chem., 82, 258 (2010). https://doi.org/10.1021/ac901909j
  46. C. J. Collins, C. Lyons, J. Strutwolf, and D. W. M. Arrigan, Serum-protein Effects on the Detection of the ${\beta}$-blocker Propranolol by Ion-transfer Voltammetry at a Micro-ITIES Array, Talanta, 80, 1993 (2010). https://doi.org/10.1016/j.talanta.2009.10.060
  47. S. O'Sullivan and D. W. M. Arrigan, Electrochemical Behaviour of Myoglobin at an Array of Microscopic Liquid-liquid Interfaces, Electrochim. Acta, 77, 71 (2012). https://doi.org/10.1016/j.electacta.2012.05.070
  48. E. Alvarez de Eulate, L. Serls, and D. W. M. Arrigan, Detection of Haemoglobin Using an Adsorption Approach at a Liquid-liquid Microinterface Array, Anal. Bioanal. Chem., 405, 3801 (2013). https://doi.org/10.1007/s00216-012-6622-2
  49. S. O'Sullivan, E. Alvarez de Eulate, Y. H. Yuen, E. Helmerhorst, and D. W. M. Arrigan, Stripping Voltammetric Detection of Insulin at Liquid-liquid Microinterfaces in the Presence of Bovine Albumin, Analyst, DOI: 10.1039/c3an01123b (2013).
  50. H. J. Lee, P. D. Beattie, B. J. Seddon, M. D. Osborne, and H. H. Girault, Amperometric Ion Sensors Based on Laser-patterned Composite Polymer Membranes, J. Electroanal. Chem., 440, 73 (1997).
  51. S. Sawada, H. Torii, T. Osakai, and T. Kimoto, Pulse Amperometric Detection of Lithium in Artificial Serum Using a Flow Injection System with a Liquid/Liquid-type Ion-selective Electrode, Anal. Chem., 70, 4286 (1998). https://doi.org/10.1021/ac9805347
  52. H. J. Lee and H. H. Girault, Amperometric Ion Detector for Ion Chromatography, Anal. Chem., 70, 4280 (1998). https://doi.org/10.1021/ac980391o
  53. H. J. Lee, C. M. Pereira, A. F. Silva, and H. H. Girault, Pulse Amperometric Detection of Salt Concentrations by Flow Injection Analysis Using Ionodes, Anal. Chem., 72, 5562 (2000). https://doi.org/10.1021/ac0006831
  54. S. N. Faisal, M. M. Hossain, and H. J. Lee, An Amperometric Proton Selective Sensor with an Elliptic Microhole Liquid/Gel Interface for Vitamin-C Quantification, J. Electrochem. Sci. Tech., 1, 121 (2010). https://doi.org/10.5229/JECST.2010.1.2.121
  55. M. M. Hossain, C. S. Kim, H. J. Cha, and H. J. Lee, Amperometric Detection of Parathion and Methyl Parathion with a Microhole-ITIES, Electroanalysis, 23, 2049 (2011). https://doi.org/10.1002/elan.201100190
  56. M. M. Hossain, H. H. Girault, and H. J. Lee, Voltammetric Studies of Anion Transfer Reactions Across a Microhole Array-Water/PVC-NPOE Gel Interface, Bull. Korean Chem. Soc., 33, 1734 (2012). https://doi.org/10.5012/bkcs.2012.33.5.1734
  57. S. Wilke, Impulse-response Functions of Low-through Detectors Based on the Membrane-stabilised Liquid-liquid Interface Part II. Experimental Verification, Anal. Chim. Acta, 295, 165 (1994). https://doi.org/10.1016/0003-2670(94)80347-1
  58. V. Marecek, M. Gratzl, A. Pungor, and J. Janata, Fluctuation Analysis of Liquid/Liquid and Gel/Liquid Interfaces, J. Electroanal. Chem., 266, 239 (1989). https://doi.org/10.1016/0022-0728(89)85071-5
  59. N. Nishi, S. Imakura, and T. Kakiuchi, Wide Electrochemical Window at the Interface between Water and a Hydrophobic Room-temperature Ionic Liquid of Tetrakis[3,5-bis(trifluoromethyl) phenyl]borate, Anal. Chem., 78, 2726 (2006). https://doi.org/10.1021/ac052152o
  60. N. Nishi, H. Murakami, S. Imakura, and T. Kakiuchi, Facilitated Transfer of Alkali-metal Cations by Dibenzo-18-crown-6 Across the Electrochemically Polarized Interface between an Aqueous Solution and a Hydrophobic Room-temperature Ionic Liquid, Anal. Chem., 78, 5805 (2006). https://doi.org/10.1021/ac060797y
  61. R. Ishimatsu, N. Nishi, and T. Kakiuchi, Interfacial Ion Pairing at the Interface between Water and a Room-temperature Ionic Liquid, N-Tetradecylisoquinolinium Bis(pentafluoroethylsulfonyl) imide, Langmuir, 23, 7608 (2007). https://doi.org/10.1021/la700884q
  62. D. S. Silvester and D. W. M. Arrigan, Array of Water/Room Temperature Ionic Liquid Micro-interfaces, Electrochem. Commun., 13, 477 (2011). https://doi.org/10.1016/j.elecom.2011.02.025
  63. T. J. Stockmann and Z. Ding, Facile Determination of Formal Transfer Potentials for Hydrophilic Alkali Metal Ions at Water/Ionic Liquid Microinterfaces, Phys. Chem. Chem. Phys., 14, 13949 (2012). https://doi.org/10.1039/c2cp42107k
  64. T. J. Stockmann, Y. Lu, J. Zhang, H. H. Girault, and Z. Ding, Interfacial Complexation Reactions of $Sr^{2+}$ with Octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine Oxide for Understanding its Extraction in Reprocessing Spent Nuclear Fuels, Chem. Eur. J., 17, 13206 (2011). https://doi.org/10.1002/chem.201102491
  65. F. Bianchi, H. J. Lee, and H. H. Girault, Ionode Detection and Capillary Electrophoresis Integrated on a Polymer Micro-chip, J. Electroanal. Chem., 523, 40 (2002). https://doi.org/10.1016/S0022-0728(02)00706-4
  66. J. A. Ribeiro, I. M. Miranda, F. Silva, and C. M. Pereira, Electrochemical Study of Dopamine and Noradrenaline at the Water/1,6-Dichlorohexane Interface, Phys. Chem. Chem. Phys., 12, 15190 (2010). https://doi.org/10.1039/c0cp00751j
  67. J. A. Ribeiro, F. Silva, and C. M. Pereira, Electrochemical Sensing of Ammonium Ion at the Water/1,6-Dichlorohexane Interface, Talanta, 88, 54 (2012). https://doi.org/10.1016/j.talanta.2011.09.054
  68. A. Sherburn, M. Platt, D. W. M. Arrigan, N. M. Boag, and R. A. W. Dryfe, Selective Silver Ion Transfer Voltammetry at the Polarised Liquid/Liquid Interface, Analyst, 128, 1187 (2003). https://doi.org/10.1039/b301832f
  69. H. Bingol, E. G. Akgemci, M. Ersoz, and T. Atalay, Electrochemical Investigation of Heavy Metal Ion Transfer Across the Water/1,2-Dichloroethane Interface Assisted by 9-Ethyl-3-carbazolecarboxaldehyde-thiosemicarbazone, Electroanalysis, 19, 1327 (2007). https://doi.org/10.1002/elan.200703843
  70. L. Tomaszewski, Z. Ding, D. J. Fermin, H. M. Cacote, C. M. Pereira, F. Silva, and H. H. Girault, Spectroelectrochemical Study of the Copper(II) Transfer Assisted by 6,7-Dimethyl-2,3-di(2-pyridyl) quinoxaline at the Water/1,2-Dichloroethane Interface, J. Electroanal. Chem., 453, 171 (1998). https://doi.org/10.1016/S0022-0728(98)00183-1
  71. A. M. O'Mahony, M. D. Scanlon, A. Berduque, V. Beni, D. W. M. Arrigan, E. Faggi, and A. Bencini, Voltammetry of Chromium (VI) at the Liquid/Liquid Interface, Electrochem. Commun., 7, 976 (2005). https://doi.org/10.1016/j.elecom.2005.06.011
  72. G. Herzog, V. Kam, A. Berduque, and D. W. M. Arrigan, Detection of Food Additives by Voltammetry at the Liquid-liquid Interface, J. Agric. Food Chem., 56, 4304 (2008). https://doi.org/10.1021/jf7035966
  73. J. A. Ortuno, A. Gil, and C. Sanchez-Pedreno, Flow-injection Pulse Amperometric Detection Based on Ion Transfer Across a Water-plasticized Polymeric Membrane Interface for the Determination of Imipramine, Sens. Actuators, B, 122, 369 (2007). https://doi.org/10.1016/j.snb.2006.05.040
  74. G. Herzog, S. Flynn, and D. W. M. Arrigan, Macromolecular Sensing at the Liquid-liquid Interface, J. Phys.: Conf. Ser., 307, 1 (2011).
  75. J. A. Ribeiro, F. Silva, and C. M. Pereira, Electrochemical Study of the Anticancer Drug Daunorubicin at a Water/Oil Interface: Drug Lipophilicity and Quantification, Anal. Chem., 85, 1582 (2013). https://doi.org/10.1021/ac3028245
  76. H. J. Lee, C. Beriet, and H. H. Girault, Stripping Voltammetric Determination of Choline Based on Micro-fabricated Composite Membrane, Anal. Sci., 14, 71 (1998). https://doi.org/10.2116/analsci.14.71
  77. C. M. Pereira, J. M. Oliveira, R. M. Silva, and F. Silva, Amperometric Glucose Biosensor Based on Assisted Ion Transfer through Gel-supported Microinterfaces, Anal. Chem., 76, 5547 (2004). https://doi.org/10.1021/ac0498765
  78. P. D. Beattie, A. Delay, and H. H. Girault, Investigation of the Kinetics of Assisted Potassium Ion Transfer by Dibenzo-18-crown-6 at the Micro-ITIES by means of Steady-state Voltammetry, J. Electroanal. Chem., 380, 167 (1995). https://doi.org/10.1016/0022-0728(94)03541-A
  79. Y. Shao, S. N. Tan, V. Devaud, and H. H. Girault, Ion Transfer Facilitated by the Neutral Carrier N,N,-Dicyclohexyl-N',N'-diisobutyl-cis-cyclohexane-l,2-dicarboxamide Across the Water/l,2-Dichloroethane Interface, J. Chem. Soc., Faraday Trans., 89, 4307 (1993). https://doi.org/10.1039/ft9938904307
  80. S. Wilke and H. Wang, Transfer of Heavy Metal Ions Across the Water/Nitrobenzene Microinterface Facilitated by the Cadmium Selective Ionophore ETH1062, J. Electroanal. Chem., 475, 9 (1999). https://doi.org/10.1016/S0022-0728(99)00327-7
  81. Y. Kudo, Y. Takeda, and H. Matsuda, On the Facilitating Effect of Neutral Macrocyclic Ligands on Ion Transfer Across the Interface between Aqueous and Organic Solutions II: Alkali Metal Ion Complexes with Hydrophilic Crown Ethers, J. Electroanal. Chem., 396, 333 (1995). https://doi.org/10.1016/0022-0728(95)04030-R
  82. T. Osakai, T. Kakutani, and M. Senda, A Novel Amperometric Ammonia Sensor, Anal. Sci., 3, 521 (1987). https://doi.org/10.2116/analsci.3.521
  83. T. Osakai, T. Kakutani, and M. Senda, A Novel Amperometric Urea Sensor, Anal. Sci., 4, 529 (1988). https://doi.org/10.2116/analsci.4.529
  84. J. A. Campbell, A. A. Stewart, and H. H. Girault, Determination of the Kinetics of Facilitated Ion Transfer Reactions Across the Micro Interface between Two Immiscible Electrolyte Solutions, J. Chem. Soc., Faraday Trans. 1, 85, 843 (1989). https://doi.org/10.1039/f19898500843
  85. P. D. Beattie, A. Delay, and H. H. Girault, Investigation of the Kinetics of Ion and Assisted Ion Transfer by the Technique of ac Impedance of the Micro-ITIES, Electrochim. Acta, 40, 2961 (1995). https://doi.org/10.1016/0013-4686(95)00229-8
  86. T. Kakutani, Y. Nishiwaki, T. Osakai, and M. Senda, On the Mechanism of Transfer of Sodium Ion Across the Nitrobenzene/Water Interface Facilitated by Dibenzo-18-crown-6, Bull. Chem. Soc. Jpn., 59, 781 (1986). https://doi.org/10.1246/bcsj.59.781
  87. P. O'Dwyer and V. J. Cunnane, Selective Transfer of $Ag^+$ at the Water/1,2-Dichloroethane Interface Facilitated by Complex Formation with a Calixarene Derivative, J. Electroanal. Chem., 581, 16 (2005). https://doi.org/10.1016/j.jelechem.2005.03.043
  88. J. Guo, Y. Yuan, and S. Amemiya, Voltammetric Detection of Heparin at Polarized Blood Plasma/1,2-Dichloroethane Interfaces, Anal. Chem., 77, 5711 (2005). https://doi.org/10.1021/ac050833d
  89. R. Cui, Q. Li, D. E. Gross, X. Meng, B. Li, M. Marquez, R. Yang, J. L. Sessler, and Y. Shao, Anion Transfer at a Micro-Water/1,2-Dichloroethane Interface Facilitated by ${\beta}$-octafluoro-meso-octamethylcalix[4]pyrrole, J. Am. Chem. Soc., 130, 14364 (2008). https://doi.org/10.1021/ja804631p