DOI QR코드

DOI QR Code

Manufacturing and Thermal Process Optimization of Ag-paste for Fabricating High Efficiency Mono-Si Solar Cell

고효율 단결정 Si 태양전지 제작을 위한 은 페이스트의 제조 및 열 공정 최적화

  • Pi, Ji-Hee (Department of Materials Science & Engineering/ReSEM, Korea National University of Transportation) ;
  • Kim, Sung-Jin (Eujene Korea Co., Ltd.) ;
  • Son, Chang-Rok (Eujene Korea Co., Ltd.) ;
  • Kweon, Soon-Yong (Department of Materials Science & Engineering/ReSEM, Korea National University of Transportation)
  • 피지희 (한국교통대학교 신소재공학과/친환경에너지 부품소재센터) ;
  • 김성진 ((주)유진코리아) ;
  • 손창록 ((주)유진코리아) ;
  • 권순용 (한국교통대학교 신소재공학과/친환경에너지 부품소재센터)
  • Received : 2013.01.07
  • Accepted : 2013.01.14
  • Published : 2013.02.01

Abstract

A New Ag-pastes were developed for integrating the high efficiency mono-Si solar cell. The pastes were the mixture of 84 wt% Ag, 2 wt% glass frit, 11 wt% solvent of buthyl cabitol acetate, and 3 wt% additives. After fabricating the Ag-pastes by using a 3-roll mill, they were coated on a $SiN_x$/n+/p- stacks of a commercial mono-Si solar cell. And the post-thermal process was also optimized by varying the process conditions of peak temperature. The optimized solar cell efficiency on a 6-inch mono-Si wafer was 18.28%, which was the one of the world best performances. It meaned that the newly developed Ag-paste could be adopted to fabricate a commercial bulk Si solar cell.

Acknowledgement

Supported by : 한국교통대학교, 지식경제부

References

  1. S. S. Kim, D. G. Lim, D. Y. Kim, J. M. Kim, C. Y. Won, and J. Yi, J. KIEEME, 10, 1034 (1997).
  2. H. Y. Kwon, J. D. Lee, M. J. Kim, and S. H. Lee, J. KIEEME, 23, 571 (2010).
  3. R. W. Vest, Ceram. Bull., 65, 631(1986).
  4. Y. Li and C. P. Wong, Mater. Sci. Eng., 51, 1 (2006). https://doi.org/10.1016/j.mser.2006.01.001
  5. Y. Zhang, Y. Yang, J. Zheng, W. Hua, and G. Chen, Mater. Chem. Phys., 114, 319 (2009). https://doi.org/10.1016/j.matchemphys.2008.09.011
  6. S. B. Rane, T. Seth, G. J. Phatak, D. P. Amalnerkar, and B. K. Das, Mater. Lett., 57, 3096 (2000).
  7. P. F. Becher and W. L. Newell, J. Mater. Sci., 12, 90 (1977). https://doi.org/10.1007/BF00738474
  8. S. A. Ketkar, G. G. Umarji, G. J. Phatak, T. Seth, U. P. Mulik, and D. P. Amalnerkar, Mater. Sci. Eng., 132, 197 (2006). https://doi.org/10.1016/j.mseb.2006.02.022
  9. Y. Yang, S. Seyedmohammadi, U. Kumar, D. Gnizak, E. Graddy, and A. Shaikh, Energy Procedia, 8, 607 (2011). https://doi.org/10.1016/j.egypro.2011.06.190
  10. S. H. Park, D. S. Seo, and J. K. Lee, Colloid Surf., 313, 197 (2008). https://doi.org/10.1016/j.colsurfa.2007.04.092
  11. L. Shiyong, W. Ning, X. Wencai, and L. Yong, Mater. Chem. Phys., 111, 20 (2008). https://doi.org/10.1016/j.matchemphys.2007.11.042
  12. S. J. Jeon, S. M. Koo, and S. A. Hwang, Solar Energy Mater. Solar Cells, 93, 1103 (2009).
  13. S. Wenham, M. A. Green, M. E. Watt, and R. Corkish, Applied Photovoltaics, 2nd ed. (Centre for Photovoltaic Engineering, UNSW, 2009) p. 49.