DOI QR코드

DOI QR Code

Dispersion Properties of Epoxy-layered Silicate Nanocomposites Using Homogenizer

균질기를 이용한 에폭시-층상 실리케이트 나노콤포지트 분산 특성

  • Lee, Sang-Keuk (Department of Electric Engineering, College of Electronics & Information Engineering, Kwangwoon University) ;
  • Park, Jae-Jun (Department of Electrical Electronic Engineering, Joongbu University)
  • 이상극 (광운대학교 전기공학과) ;
  • 박재준 (중부대학교 전기전자공학과)
  • Received : 2012.12.24
  • Accepted : 2013.01.21
  • Published : 2013.02.01

Abstract

This paper presents a study on the dispersion effect of the X-Ray diffraction, glass transition and DMA properties of organic modifier clay/epoxy nanocomposites produced in a homogenizer. Several experiments were conducted including different types of dispersion condition with varying processing conditions such as homogenizer rotor speed and applied time of homogenizer. The effects of these variables on the dispersion properties of nanocomposites were then studied. In order to fully understand the experimental results, a X-ray diffraction, DSC and DMA were used to investigate the effect of above mentioned variables on microstructure and intercalation/exfoliation of organic modifier clay/epoxy nanocomposites. The results from this work could be used to determine the best processing condition to obtain appropriate levels of d-spacing, glasss transition temperature and storage modulus in organic modifier clay/epoxy nanocomposites.

References

  1. R. Sarathi, R. K. Sahu, and P. Rajeshkumar, Mater. Sci. Eng., A445, 567 (2007).
  2. N. Hayakawa, H. Maeda, S. Chigusa, and H. Okubo, Cryogenics, 40, 167 (2000). https://doi.org/10.1016/S0011-2275(00)00024-2
  3. B. Jo, S. Park, and D. Kim, Construct. Building Mater., 22, 14 (2008). https://doi.org/10.1016/j.conbuildmat.2007.02.009
  4. A. Yasmin, J. L. Abot, and I. M. Daniel, Scr. Mater., 49, 81 (2003). https://doi.org/10.1016/S1359-6462(03)00173-8
  5. A. Yasmin, J. J. Luo, and I. M. Daniel, Compos. Sci. Technol., 66, 1182 (2006). https://doi.org/10.1016/j.compscitech.2005.10.014
  6. D. C. Lee and L. W. Jang, J. Appl. Polym. Sci., 68, 1997 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980620)68:12<1997::AID-APP14>3.0.CO;2-P
  7. H. R. Dennis, D. Hunter, D. Chang, S. Kim, and D. R. Paul, Polymer, 42, 9513 (2001). https://doi.org/10.1016/S0032-3861(01)00473-6
  8. R. A. Vaia, K. D. Jant, E. J. Kramer, E. P. Giannelis, Chem. Mater., 8, 2628 (1996). https://doi.org/10.1021/cm960102h
  9. J. J. Park and J. Y. Lee, IEEE Trans. Dielectr. Electr. Insul., 17, 1516 (2010). https://doi.org/10.1109/TDEI.2010.5595553
  10. J. J. Park, C. H. Lee, J. Y. Lee, and H. D. Kim, IEEE Trans. Dielectr. Electr. Insul., 18, 667 (2011). https://doi.org/10.1109/TDEI.2011.5931051
  11. S. D. Burnside and E. P. Giannelis, Chem. Mater., 7, 1597 (1995). https://doi.org/10.1021/cm00057a001
  12. J. H. Park and S. Jana, Macromolecules, 36, 2758 (2003). https://doi.org/10.1021/ma021509c
  13. F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, J. Compos. Mater., 40, 1511 (2006). https://doi.org/10.1177/0021998306067321
  14. C. L. Wu, M. Q. Zhang, M. Z. Rong, and K. Friedrich, Compos. Sci. Technol., 62, 1327 (2002). https://doi.org/10.1016/S0266-3538(02)00079-9
  15. I. J. Chin, Nanomaterials (Daeyoungsa, Seoul, 2005) p. 502-506.
  16. D. Dean, A. M. Obore, S. Richmond, and E. Nyairo, Compos. Sci. Technol., 66, 2135 (2006). https://doi.org/10.1016/j.compscitech.2005.12.015
  17. T. Lan and T. J. Pinnavaia, Chem. Mater., 6, 2216 (1994). https://doi.org/10.1021/cm00048a006
  18. J. Wang and S. Qin, Mater. Lett., 61, 4222 (2007). https://doi.org/10.1016/j.matlet.2007.01.058
  19. T. Imai, Y. Hirano, H. Hirai, S. Kojima, and T. Shimizu, Conf. Rec. IEEE ISEI, 379 (2002).
  20. L. Y. Lin, J. H. Lee, C. E. Hong, G. H. Yoo, and S. G. Advani, Compos. Sci. Technol., 66, 2116 (2006). https://doi.org/10.1016/j.compscitech.2005.12.025
  21. J. M. Brown, D. Curlss, and R. A. Vaia, Chem. Mater., 12, 3376 (2000). https://doi.org/10.1021/cm000477+