DOI QR코드

DOI QR Code

Dielectric and Piezoelectric Properties of 0.95(Na0.5K0.5)0.04[(Nb0.8Ta0.20)0.994Co0.015]O3-0.05KNbO3 Ceramics as a Function of Calcination Temperature

하소온도 변화에 따른 0.95(Na0.5K0.5)0.04[(Nb0.8Ta0.20)0.994Co0.015]O3-0.05KNbO3 세라믹스의 유전 및 압전 특성

  • Park, Min-Ho (Department of Electrical Engineering, Semyung University) ;
  • Lee, Kab-Soo (Department of Electrical Engineering, Semyung University) ;
  • Yoo, Ju-Hyun (Department of Electrical Engineering, Semyung University) ;
  • Jeong, Woy-Seung (Institute of Health Industry, Chungbuk Health & Science University)
  • 박민호 (세명대학교 전기공학과) ;
  • 이갑수 (세명대학교 전기공학과) ;
  • 류주현 (세명대학교 전기공학과) ;
  • 정회승 (충북보건과학대 보건의료산업연구소)
  • Received : 2012.12.26
  • Accepted : 2013.01.17
  • Published : 2013.02.01

Abstract

In this paper, the $0.95(Na_{0.5}K_{0.5})_{0.04}[(Nb_{0.8}Ta_{0.20})_{0.994}Co_{0.015}]O_3$(abbreviated as NKNT) + $0.05KNbO_3$ lead-free piezoelectric ceramics were synthesized by the conventional mixed oxide method route with normal sintering. And also, the effects of calcination temperature on the microstructure, dielectric properties, and piezoelectric properties were investigated. A polymorphic phase transition(PPT) between orthorhombic and tetragonal phases was observed in specimens calcined at $810^{\circ}C{\sim}850^{\circ}C$. The ceramics calcined at $830^{\circ}C$ showed excellent piezoelectric properties: $d_{33}$= 179 pC/N, $k_p$= 0.384, $Q_m$= 79.73). These results indicate that the ceramic is a promising candidate material for lead-free piezoelectric ceramics.

References

  1. J. Hong, J. Yoo, K. Lee, and H. Song, J. Appl. Phys., 474, 2192 (2008).
  2. J. Yoo, D. Kim, K. Yoo, H. Oh, I. Lee, S. Lee, L. Hwang, and Y. Jeong, Jpn. J. Appl. Phys., 46, 7063 (2007). https://doi.org/10.1143/JJAP.46.7063
  3. J. Yoo, K. Yoo, S. Lee, H. Lee, K. Jung, H. Lee, and H. Kang J. Appl. Phys., 44, 7042 (2005). https://doi.org/10.1143/JJAP.44.7042
  4. D. Oh, K. Moon, H. Lee, and J. Yoo J. Appl. Phys., 9, 6661 (2005).
  5. E. Ringgaard and T. Wurlitzer, J. Eur. Ceram. Soc., 25, 2701 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.126
  6. H. Y. Park, I. T. Seo, J. H. Choi, S. Nahm, and H. G. Lee, J. Am. Ceram. Soc., 93, 36 (2010). https://doi.org/10.1111/j.1551-2916.2009.03359.x
  7. C. H. Wang, Jpn. J. Ceram. Soc., 118, 1176 (2010). https://doi.org/10.2109/jcersj2.118.1176
  8. M. R. Yang, C. C. Tsai, C. S. Hong, S. Y. Chu, and S. L. Yang, J. Appl. Phys., 108, 094103 (2010). https://doi.org/10.1063/1.3493732
  9. C. H. Wang, X. W. Zhang, and Y. J. Dai, Mater. Lett., 67, 145 (2012). https://doi.org/10.1016/j.matlet.2011.09.069
  10. D. Lin, K. Kwok, and H. Chan, J. Appl. Phys., 481, 310 (2009).
  11. Y. Hiruma, K. Yoshii, H, Nagate, and T. Takenaka, J. Appl. Phys., 103, 84121 (2008). https://doi.org/10.1063/1.2903498