DOI QR코드

DOI QR Code

유기박막 트랜지스터에서 문턱전압 이동의 모델링 및 시뮬레이션

Modeling and Simulation of Threshold Voltage Shift in Organic Thin-film Transistors

  • 정태호 (서울과학기술대학교 전자IT미디어공학과)
  • Jung, Taeho (Department of Electronic and IT Media Engineering, Seoul National University of Science and Technology)
  • 투고 : 2012.12.10
  • 심사 : 2013.01.22
  • 발행 : 2013.02.01

초록

In this paper the author proposes a method of implementing a numerical model for threshold voltage ($V_{th}$) shift in organic thin-film transistors (OTFTs) into SPICE tools. $V_{th}$ shift is first numerically modeled by dividing the shift into sequentially ordered groups. The model is then used to derive a simulations model which takes into simulation parameters and calculation complexity. Finally, the numerical and simulation models are implemented in AIM-SPICE. The SPICE simulation results agree well with the $V_{th}$ shift obtained from an OTFT fabricated without any optimization. The proposed method is also used to implement the stretched-exponential time dependent $V_{th}$ shift in AIM-SPICE and the results show the proposed method is applicable to various types of $V_{th}$ shifts.

과제정보

연구 과제 주관 기관 : 서울과학기술대학교

참고문헌

  1. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 14, 99117 (2002).
  2. H. Klauk, Chem. Soc. Rev., 39, 2643 (2010). https://doi.org/10.1039/b909902f
  3. J. E. Anthony, D. L. Eaton, and S. R. Parkin, Org. Lett., 4, 15 (2002). https://doi.org/10.1021/ol0167356
  4. M. C. Delgado, K. R. Pigg, D. A. da Silva Filho, N. E. Gruhn, Y. Sakamoto, T. Suzuki, R. M. Osuna, J. Casado, V. Hernandez, J. T. L. Navarrete, N. G. Martinelli, J. Cornil, R. S. Sanchez-Carrera, V. Coropceanu, and J. L. Bredas, J. Am. Chem. Soc., 131, 1502 (2009). https://doi.org/10.1021/ja807528w
  5. D. Braga and G. Horowitz, Adv. Mater., 21, 1473 (2009). https://doi.org/10.1002/adma.200802733
  6. H. Sirringhaus, Adv. Mater., 21, 3859 (2009). https://doi.org/10.1002/adma.200901136
  7. T. Jung, Proc. 6th Int. Conf. on Convergence and Hybrid Information Technology (eds. G. Lee, D. Howard, J. J. Kang, and D. Slezak) (Daejeon, Korea, 2012) p. 453.
  8. K. K. Ryu, I. Nausieda, D. D. He, A. I. Akinwande, V. Bulovic, and C. G. Sodini, IEEE Trans. Elect. Dev., 57, 1003 (2010). https://doi.org/10.1109/TED.2010.2044282
  9. S. C. Deane, R. B. Wehrspohn, and M. J. Powell, Phys. Rev., B58, 12625 (1998).
  10. H. L. Gomes, P. Stallinga, F. Dinelli, M. Murgia, F. Biscarini, D. M. D. Leeuw, M. Muccini, and K. Mllen, Polym. Adv. Technol., 16, 227 (2005). https://doi.org/10.1002/pat.558
  11. H. H. Choi, M. S. Kang, M. Kim, H. Kim, J. H. Cho, and K. Cho, Adv. Funct. Mater., doi: 10.1002/adfm.201201545 (2012). https://doi.org/10.1002/adfm.201201545
  12. M. Chan, X. Xi, J. He, K. M. Cao, M. V. Dunga, A. N. Niknejad, P. K. Ko, and C. Hu, Microelectron. Reliab., 43, 399 (2003). https://doi.org/10.1016/S0026-2714(02)00278-0