DOI QR코드

DOI QR Code

Output Characteristics of Carbon-nanotube Field-effect Transistor Dependent on Nanotube Diameter and Oxide Thickness

나노튜브 직경과 산화막 두께에 따른 탄소나노튜브 전계 효과 트랜지스터의 출력 특성

  • Park, Jong-Myeon (Department of Electronic Engineering, Korea Aerospace University) ;
  • Hong, Shin-Nam (Department of Electronic Engineering, Korea Aerospace University)
  • 박종면 (한국항공대학교 항공전자공학과) ;
  • 홍신남 (한국항공대학교 항공전자공학과)
  • Received : 2012.11.14
  • Accepted : 2013.01.02
  • Published : 2013.02.01

Abstract

Carbon-nanotube field-effect transistors (CNFETs) have drawn wide attention as one of the potential substitutes for metal-oxide-semiconductor field-effect transistors (MOSFETs) in the sub-10-nm era. Output characteristics of coaxially gated CNFETs were simulated using FETToy simulator to reveal the dependence of drain current on the nanotube diameter and gate oxide thickness. Nanotube diameter and gate oxide thickness employed in the simulation were 1.5, 3, and 6 nm. Simulation results show that drain current becomes large as the diameter of nanotube increases or insulator thickness decreases, and nanotube diameter affects the drain current more than the insulator thickness. An equation relating drain saturation current with nanotube diameter and insulator thickness is also proposed.

References

  1. M. P. Anantram and F. Leonard, Rep. Prog. Phys., 69, 507 (2006). https://doi.org/10.1088/0034-4885/69/3/R01
  2. H. Li, C. Xu, N. Sricastava, and K. Banerjee, IEEE Trans. Elec. Dev., 56, 1799 (2009). https://doi.org/10.1109/TED.2009.2026524
  3. J. Appenzeller, Proc. IEEE, 96, 201 (2008). https://doi.org/10.1109/JPROC.2007.911051
  4. M. C. Shin, J. Korean Phys. Soc., 52, 1287 (2008). https://doi.org/10.3938/jkps.52.1287
  5. A. Raychowdhury, S. Mukhopadhyay, and K. Roy, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 23, 1411 (2004). https://doi.org/10.1109/TCAD.2004.835135
  6. B. C. Paul, and T. Lee, ACM Journal on Emerging Technologies in Computing System, 3, 12:1 (2007). https://doi.org/10.1145/1229175.1229176
  7. A. Aouaj, A. Bouziane, and A. Nouacry, Proc. Int. Conf. Multimedia Computing and Syst. ICMCS '09 (Ouarzazate, Morocco, 2009) p. 236.
  8. F. Pregaldiny, C. Lallement, and J. B. Kammerer, Proc. IEEE Int. Conf. Design Test Integr. Syst. (DTIS) Nano. Technol. (Tunis, Tunisia, 2006) p. 34.
  9. J. M. Park, J. H. An, and S. N. Hong, J. Korean Phys. Soc., 61, 410 (2012). https://doi.org/10.3938/jkps.61.410
  10. A. Rahman, J. Guo, S. Datta, and M. S. Lundstrom, IEEE Trans. Elec. Dev., 50, 1853 (2003). https://doi.org/10.1109/TED.2003.815366
  11. NANOHUB Online Simulation and More. Available http://www.nanohub.org (2006).
  12. D. Akinwande, J. Liang, S. Chong, Y. Nishi, and H. S. P. Wong, J. Appl. Phys., 104, 124514 (2008). https://doi.org/10.1063/1.3050345