DOI QR코드

DOI QR Code

PL Study on the ZnO Thin Film with Temperatures

온도 변화에 따른 ZnO 박막에 대한 PL 연구

  • Cho, Jaewon (Department of Electrophysics, Kwangwoon University)
  • 조재원 (광운대학교 전자물리학과)
  • Received : 2012.11.19
  • Accepted : 2012.12.24
  • Published : 2013.02.01

Abstract

The optical properties of ZnO thin film have been studied using photoluminescence(PL) spectroscopy with the change of sample temperatures from 10 K to 290 K. The spectrum at 10 K showed the characteristic emission lines of ZnO which were as follows: free exciton(FX) at 3.369 eV, neutral donor-bound exciton($D^0X$) at 3.360 eV, two electron satellite(TES) at 3.332 eV, $D^0X$-1LO at 3.289 eV, and donor-acceptor pair(DAP) transiton at 3.217 eV. From the spectral evolution with temperatures, two features could be identified as temperature went higher: (1) the bound excitons changed gradually into free excitons, (2) DAP turned into free electron-acceptor transition(e,$A^0$). The PL intensity of free exciton increased with the increase of temperatures, which was accompanied by the decrease of the intensity of bound excitions and bound excition-related transitons such as TES and $D^0X$-1LO. At 80 K DAP transition disappeared, while (e,$A^0$) transition started to appear at 30 K.

Keywords

Acknowledgement

Supported by : 광운대학교

References

  1. K. Ellmer, J. Phys., D33, R17 (2000).
  2. D. C. Look, B. Clafin, Y. I. Alivor, and S. J. Park, Phys. Status Soldi., A201, 2203 (2004).
  3. Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H. W. White, J. Cryst. Growth, 216, 330 (2000). https://doi.org/10.1016/S0022-0248(00)00437-1
  4. Y. F. Chen, D. M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys., 84, 3912 (1998). https://doi.org/10.1063/1.368595
  5. W. Y. Liang and A. D. Yoffe, Phys. Rev. Lett., 20, 59 (1968). https://doi.org/10.1103/PhysRevLett.20.59
  6. D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell, and W . C. Harsch, Phy. Rev., B60, 2340 (1999).
  7. D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Appl. Phys. Lett., 72, 3458 (1998). https://doi.org/10.1063/1.121665
  8. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun., 103, 459 (1997). https://doi.org/10.1016/S0038-1098(97)00216-0
  9. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, J. Cryst. Growth, 184/185, 605 (1998). https://doi.org/10.1016/S0022-0248(98)80127-9
  10. A. Kobayashi, O. F. Sankey, and J. D. Dow, Phys. Rev., B28, 946 (1983).
  11. A. Teke, U. Ozgur, S. Dogan, X. Gu, and H. Morkoc, Phys. Rev., B70, 195207 (2004).
  12. H. Alves, D. Pfisterer, A. Zeuner, T. Riemann, J. Christen, D. M. Hofmann, and B. K. Meyer, Opt. Mat., 23, 33 (2007).
  13. L. Wang and N. C. Giles, J. Appl. Phys., 94, 973 (2003). https://doi.org/10.1063/1.1586977
  14. K. Thonke, T. Gruber, N. Teofilov, R. Schonfelder, A. Waag, and R. Sauer, Physica, B308-310, 945 (2001).
  15. Y. P. Varshni, Physica, 34, 149 (1967). https://doi.org/10.1016/0031-8914(67)90062-6
  16. J. I. Pankove, Optical Processes in Semiconductors, (Dover Publications, New York, 1971) p. 143.
  17. B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Foster, F. Bertram, J. Christen, A. Hoffmann, M. Stasshurg, M. Dwurzak, U. Haboeck, and A. V. Rodina, Phys. Stat. Sol., B241, 231 (2004).
  18. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, and Morkoc, J. Appl. Phys., 98, 041301 (2005). https://doi.org/10.1063/1.1992666