DOI QR코드

DOI QR Code

Estimation on the Generalized Half Logistic Distribution under Type-II Hybrid Censoring

  • Seo, Jung-In (Department of Statistics, Yeungnam University) ;
  • Kim, Yongku (Department of Statistics, Yeungnam University) ;
  • Kang, Suk-Bok (Department of Statistics, Yeungnam University)
  • Received : 2012.09.06
  • Accepted : 2013.01.10
  • Published : 2013.01.31

Abstract

In this paper, we derive maximum likelihood estimators (MLEs) and approximate maximum likelihood estimators (AMLEs) of unknown parameters in a generalized half logistic distribution under Type-II hybrid censoring. We also obtain approximate confidence intervals using asymptotic variance and covariance matrices based on the MLEs and the AMLEs. As an illustration, we examine the validity of the proposed estimation using real data. Finally, we compare the proposed estimators in the sense of the mean squared error (MSE), bias, and length of the approximate confidence interval through a Monte Carlo simulation for various censoring schemes.

References

  1. Arora, S. H., Bhimani, G. C. and Patel, M. N. (2010). Some results on maximum likelihood estimators of parameters of generalized half logistic distribution under Type-I progressive censoring with changing, International Journal of Contemporary Mathematical Sciences, 5, 685-698.
  2. Balakrishnan, N. (1989). Approximate MLE of the scale parameter of the Rayleigh distribution with censoring, IEEE Transactions on Reliability, 38, 355-357. https://doi.org/10.1109/24.44181
  3. Balakrishnan, N. and Kannan, N. (2001). Point and interval estimation for the logistic distribution based on progressively Type-II censored samples, in Handbook of Statistics, Balakrishnan, N. and Rao, C. R., Eds. 20, 431-456.
  4. Balakrishnan, N., Kannan, N., Lin, C. T. and Wu, S. J. S. (2004). Inference for the extreme value distribution under progressively Type-II censoring, Journal of Statistical Computation and Simulation, 74, 25-45. https://doi.org/10.1080/0094965031000105881
  5. Balakrishnan, N. and Puthenpura, N. (1986). Best linear unbiased estimators of location and scale parameters of the half logistic distribution, Journal of Statistics and Computer Simulation, 25, 193-204. https://doi.org/10.1080/00949658608810932
  6. Balakrishnan, N. and Sandhu, R. A. (1995). A simple simulational algorithm for generating progressively Type-II censored samples, The American Statistician, 49, 229-230.
  7. Balakrishnan, N. andWong, K. H. T. (1991). Approximate MLEs for the location and scale parameters of the half-logistic distribution with Type-II right censoring, IEEE Transactions on Reliability, 40, 140-145. https://doi.org/10.1109/24.87114
  8. Banerjee, A. and Kundu, D. (2008). Inference based on Type-II hybrid censored data from a Weibull Distribution, IEEE Transactions on Reliability, 57, 369-378. https://doi.org/10.1109/TR.2008.916890
  9. Childs, A., Chandrasekhar, B., Balakrishnan, N. and Kundu, D. (2003). Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution, Annals of the Institute of Statistical Mathematics, 55, 319-330.
  10. Epstein, B. (1954). Truncated life tests in the exponential case, Annals of the Institute of Statistical Mathematics, 25, 555-564. https://doi.org/10.1214/aoms/1177728723
  11. Han, J. T. and Kang, S. B. (2008). Estimation for the double Rayleigh distribution based on multiply Type-II censored samples, Communications of the Korean Statistical Society, 15, 367-378. https://doi.org/10.5351/CKSS.2008.15.3.367
  12. Kang, S. B., Cho, Y. S. and Han, J. T. (2008). Estimation for the half logistic distribution under progressively Type-II censoring, Communications of the Korean Statistical Society, 15, 815-823. https://doi.org/10.5351/CKSS.2008.15.6.815
  13. Kang, S. B., Cho, Y. S. and Han, J. T. (2009). Estimation for the half logistic distribution based on double hybrid censored samples, Communications of the Korean Statistical Society, 16, 1055-1066. https://doi.org/10.5351/CKSS.2009.16.6.1055
  14. Kang, S. B., Cho, Y. S. and Han, J. T. (2009). Estimation for the half triangle distribution based on Type-I Hybrid Censored Sample, Journal of the Korean Data & Information Science Society, 20, 961-969.
  15. Kim, Y. K., Kang, S. B. and Seo, J. I. (2011a). Bayesian estimations on the exponentiated half triangle distribution under Type-I hybrid censoring, Journal of the Korean Data & Information Science Society, 22, 565-574.
  16. Kim, Y. K., Kang, S. B. and Seo, J. I. (2011b). Bayesian estimation in the generalized half logistic distribution under progressively Type-II censoring, Journal of the Korean Data & Information Science Society, 22, 977-987.
  17. Kundu, D. (2007). On hybrid censored Weibull distribution, Journal of Statistical Planning and Inference, 137, 2127-2142. https://doi.org/10.1016/j.jspi.2006.06.043
  18. Lin, C. T., Wu, S. J. S. and Balakrishnan, N. (2006). Inference for log-gamma distribution based on progressively Type-II censored data, Communication in Statistics-Theory and Methods, 35, 1271-1292. https://doi.org/10.1080/03610920600692789
  19. Nelson, W. B. (1982). Applied Life Data Analysis, John Willey & Sons, New York.
  20. Seo, E. H. and Kang, S. B. (2007). AMLEs for Rayleigh distribution based on progressively Type-II censored data, The Korean Communications in Statistics, 14, 329-344. https://doi.org/10.5351/CKSS.2007.14.2.329

Cited by

  1. Generalized half-logistic Poisson distributions vol.24, pp.4, 2017, https://doi.org/10.5351/CSAM.2017.24.4.353
  2. Estimation and testing procedures for the reliability functions of generalized half logistic distribution vol.45, pp.2, 2016, https://doi.org/10.1016/j.jkss.2015.11.007