DOI QR코드

DOI QR Code

The inhibitive effect of erythritol on growth and acidogenic ability of Streptococcus mutans

에리스리톨의 Streptococcus mutans에 대한 성장력과 산생성능의 억제효과

  • 박영남 (김천대학교 치위생학과)
  • Received : 2013.10.03
  • Accepted : 2013.12.20
  • Published : 2013.12.28

Abstract

The purpose of this study was to closely examine the inhibitive effect of erythritol on growth and acidogenic ability of Streptococcus mutans. As expected, the growth of S. mutans was comparably increased with the addition of sucrose. However, xylitol and erythritol remarkably reduced the growth of S. mutans. Growth inhibition was detected at more than 5% of erythritol although xylitol showed growth inhibition effect at all concentrations tested. Growth inhibition effect was monitored with the combination of same concentration of erythritol and other carbohydrates. Combination of 5% or 10% erythritol with xylitol showed effective growth inhibition. Addition of 2.5%, 5%, or 10% erythritol with sorbitol also showed growth inhibition. From these results, erythritol showed potency of growth inhibition of S. mutans, which is involved in dental caries, and was confirmed to be an excellent sugar substitute, which has effect on preventing caries.

Keywords

Streptococcus mutans;erythritol;dental caries;growth;acidogenic ability

References

  1. Vacca-Smith AM, Bowen WH. Binding properties of streptococcal glucosyltransferase for hydroxyl apatite, saliva-coated hydroxylapatite and bacteri al surfaces. Arch Oral Biol, Vol. 43, pp. 103-110, 1988
  2. Fujiwara T, Sasada E, Mima N, Ooshima T. Caries prevalence and salivary mutans streptococci in 0-2-year-old children of Japen. Community Dent Oral Epidemiol, Vol. 19, pp. 151-154, 1991 https://doi.org/10.1111/j.1600-0528.1991.tb00131.x
  3. Kuramitsu HK. Virulence factors of mutans streptococci: role of molecular genetics. Crit Rec Oral Biol and Med, Vol. 4, pp. 159-176, 1993 https://doi.org/10.1177/10454411930040020201
  4. Makinen KK, Alanen P, Isokangas P, Isotupa K, Soderling E, Makinen PL. Thirty-nine-month xylitol chewing-gum program in initially 8-year-old school children : a feasibility study focusing on mutans streptococci and lactobacilli. Int Dent J, Vol. 58, pp. 41-50, 2008 https://doi.org/10.1111/j.1875-595X.2008.tb00175.x
  5. Soderling E, Makinen KK, Chen CY, Pape HR Jr, Loesche W, Makinen PL. Effect of sorbitol, xylitol and xylitol/sorbitol chewing gums on dental plaque. Caries Res, Vol. 23, pp. 378-384, 1989 https://doi.org/10.1159/000261212
  6. Haresaku S, Hanioka T, Tsutsui A, Yamamoto M, Chou T, Gunjishima Y. Long-term effect of xylitol gum use on mutans streptococci in adult. Caries Res, Vol. 41, pp. 198-203, 2007 https://doi.org/10.1159/000099318
  7. Birkhed D, Bar A. Sorbitol and dental caries. World Rev Nutr Diet, Vol. 65, pp. 1-37, 1991
  8. Makinen KK, Isotupa KP, Kivilompolo T, Makinen P-L, Murtomaa S, Petaja J, Toivanen J, Soderling E. The effect of poly-combinant saliva stimulants on S. mutans levels in plaque and saliva of patients with mental retardation. Spec Care Dent, Vol. 22, pp. 187-193, 2002 https://doi.org/10.1111/j.1754-4505.2002.tb00269.x
  9. Makinen KK, Isotupa KP, Kivilompolo T, Makinen P-L, Toivanen J, Soderling E. Comparision of erythritol and xylitol saliva stimulants in the control of dental plaque and mutans streptococci. Caries Res, Vol. 35, pp. 129-135, 2005
  10. Makinen KK, Soderling E, Hurttia H, Lehtonen OP, Luukkala E. Biochemical, microbiological, and clinical comparisions between two dentifrices that contain different mixtures of sugar alcohols. J Am Dent Assoc, Vol. 111, No. 7, pp. 45-751, 1985
  11. Clark JBK, Graham EF, Lewis BA, Smith F. D-Mannitol, sorbitol and glycerol in bovine serum. J Reprod Fertil, Vol. 13, pp. 189-197, 1967 https://doi.org/10.1530/jrf.0.0130189
  12. Cock P, Bechert C-L. Erythritol : Functionality in noncaloric functional beverages. Pure Appl chem, Vol. 74, pp. 1281-1289, 2002
  13. Kawanabe J, Hirasawa M, Takeuchi T, Oda T, Ikeda T. Noncariogenicity of erythritol as a substrate. Caries Res, Vol. 26, pp. 358-362. 1992 https://doi.org/10.1159/000261468
  14. Dodds MJ, Hiseh SC, Johnson DA. The effect of increased mastication by d aily gum-chewing on salivary gland output and dental acidogenicity. J Dent Res, Vol. 70, pp. 1474-1478, 1991 https://doi.org/10.1177/00220345910700120101
  15. Hanada N. Current understanding of the cause of dental caries. Jpn J Infect Dis, Vol. 53, pp. 1-5, 2000
  16. Gibbons RJ, Fitzgerald RJ. Dectran-induced agglutination of streptococcus mutans and its potential role in the formation of microbial dental plaques. J Bacteriol, Vol. 98, pp. 341-346, 1969
  17. Rolla G, Scheie AA, Ciardi JE. Role of sucrose in plaque formation. Scand J Dent Res, Vol. 93, pp. 105-111, 1985
  18. K.H Kim, B.C. Jeong, J.S. Oh, G.H. Yang. The effect of xylitol and carbohydrates on streptococcus. Korean academy of pediatric dentistry, Vol. 29, pp. 561-567, 2002
  19. K.H. Shin, G.H. Yang, N.G. Choi, S.M. Kim, J.S. Oh. The effect of xylitol on the lactose fermentation of streptococcus. Korean academy of pediatric dentistry, Vol. 31, pp. 202-211, 2004
  20. Eva S, Aija-Maaria H-L. Xylitol and erythritol decrease adherence of polysaccharide-producing oral Streptococci. Curr Microbiol, Vol. 60, pp. 25-29, 2010 https://doi.org/10.1007/s00284-009-9496-6
  21. Zucca M, Cenna S, Berzioli S, Gariglio M, Fagnoni V. Streptococcus mutans and dental caries : micro biological aspects. G Bacteriol Virol Immunol, Vol. 83, pp. 108-117, 1990
  22. Jean Claude MP. Anti-cariogenic activity of erythritol. US Patent, 2001
  23. Kauko K, Makinen KK. Sugar Alcohols, Caries Incidence, and Remineralization of Caries Lesions: A Literature Review. Int J Dent, 981072, 2010
  24. Y.H .No, K.U. Lee, K.Y. Jang. Inhibittory effects of erythritol on the growth and adsorption to saliva -coated HA beads of some oral bacteria. Korean academy of oral health, Vol. 24, pp. 69-83, 2000
  25. Dibdin GH, Shellis RP. Physical and biochemical studies of streptococcus mutans sediments suggest new factors linking the cariogenicity of plaque with it's extracellular polysaccharide content. J Dent Res, Vol. 67, pp. 890-895, 1988 https://doi.org/10.1177/00220345880670060101
  26. Ooshima T, Matsumura M, Hoshino T, Kawabata S, Sobue S, Fujiwara T. Conrtibutions of three glycosyltransferase to sucrose-dependent adherence of streptococcus mutans. J Dent Res, Vol. 80, pp. 1672-1677, 2001 https://doi.org/10.1177/00220345010800071401
  27. Thaweboon S, Thaweboon B, Soo-Ampon S. The effect of xylitol chewing gum on mutans streptococci in saliva and dental plaque. Southeast Asian J Trop Med Public Health, Vol. 35, pp. 1024-1027, 2004