DOI QR코드

DOI QR Code

MicroRNA-802 Promotes Osteosarcoma Cell Proliferation by Targeting p27

  • Cao, Zhong-Qing (Department of Orthopedics, St. Luke's Hospital) ;
  • Shen, Zan (Department of Oncology, First Affiliated People's Hospital, Shanghai Jiaotong University) ;
  • Huang, Wei-Yi (Department of Oncology, First Affiliated People's Hospital, Shanghai Jiaotong University)
  • Published : 2013.12.31

Abstract

MicroRNAs have been demonstrated to regulate proliferation and apoptosis in many types of cancers, but biological functions in osteosarcomas remain relatively unknown. Here, we found expression of miR-802 to be up-regulated in osteosarcoma tissues in comparison with adjacent normal tissues. Enforced expression of miR-802 was able to promote cell proliferation in U2OS and MG63 cells, while miR-802 antisense oligonucleotides (antisense miR-802) inhibited cell proliferation. At the molecular level, our results further revealed that expression of p27, a negative cell-cycle regulator, was negatively regulated by miR-802. Therefore, the data reported here indicate that miR-802 is an important regulator in osteosarcoma, our findings contributing to a better understanding of important mis-regulated miRNAs in this tumour type.

References

  1. Bushati N, Cohen SM (2007). MicroRNA functions. Annu Rev Cell Dev Biol, 23, 175-205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406
  2. Chen K, Rajewsky N (2007). The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics, 8, 93-103.
  3. Damo LA, Snyder PW, Franklin DS (2005). Tumorigenesis in p27/p53- and p18/p53-double null mice: functional collaboration between the pRb and p53 pathways. Mol Carcinog, 42, 109-20. https://doi.org/10.1002/mc.20068
  4. DuBois SG, Grier HE (2009). Chemotherapy: The role of ifosfamide and etoposide in Ewing sarcoma. Nat Rev Clin Oncol, 6, 251-3. https://doi.org/10.1038/nrclinonc.2009.25
  5. Eppert K, Wunder JS, Aneliunas V, Kandel R, Andrulis IL (2005). von Willebrand factor expression in osteosarcoma metastasis. Mod Pathol, 18, 388-97. https://doi.org/10.1038/modpathol.3800265
  6. Amankwah EK, Conley AP, Reed DR (2013). Epidemiology and therapies for metastatic sarcoma. Clin Epidemiol, 5, 147-62.
  7. Bartel DP (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281-97. https://doi.org/10.1016/S0092-8674(04)00045-5
  8. Esquela-Kerscher A, Slack FJ (2006). Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer, 6, 259-69. https://doi.org/10.1038/nrc1840
  9. He C, Xiong J, Xu X, et al (2009). Functional elucidation of MiR-34 in osteosarcoma cells and primary tumor samples. Biochem Biophys Res Commun, 388, 35-40. https://doi.org/10.1016/j.bbrc.2009.07.101
  10. Klein MJ, Siegal GP (2006). Osteosarcoma: anatomic and histologic variants. Am J Clin Pathol, 125, 555-81. https://doi.org/10.1309/UC6KQHLD9LV2KENN
  11. Kornfeld JW, Baitzel C, Konner AC, et al (2013). Obesityinduced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature, 494, 111-5. https://doi.org/10.1038/nature11793
  12. Li G, Cai M, Fu D, et al (2012). Heat shock protein 90B1 plays an oncogenic role and is a target of microRNA-223 in human osteosarcoma. Cell Physiol Biochem, 30, 1481-90. https://doi.org/10.1159/000343336
  13. Lin DH, Yue P, Pan C, Sun P, Wang WH (2011). MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1. J Am Soc Nephrol, 22, 1087-98. https://doi.org/10.1681/ASN.2010090927
  14. Mao J, Zhou R, Peng A, et al (2012). microRNA-195 suppresses osteosarcoma cell invasion and migration in vitro by targeting FASN. Oncol Lett, 4, 1125-29. https://doi.org/10.3892/ol.2012.863
  15. Micel LN, Tentler JJ, Smith PG, Eckhardt GS (2013). Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J Clin Oncol, 31, 1231-8. https://doi.org/10.1200/JCO.2012.44.0958
  16. Resnick D, Kransdorf MJ (2005) Bone and joint imaging, 3rd ed. Philadelphia: Saunders.
  17. Sansom SE, Nuovo GJ, Martin MM, et al (2010). miR-802 regulates human angiotensin II type 1 receptor expression in intestinal epithelial C2BBe1 cells. Am J Physiol Gastrointest Liver Physiol, 299, 632-42. https://doi.org/10.1152/ajpgi.00120.2010
  18. Song B, Wang Y, Xi Y, et al (2009). Mechanism of chemoresistance mediated by miR-140 in human osteosarcoma and colon cancer cells. Oncogene, 28, 4065-74. https://doi.org/10.1038/onc.2009.274
  19. Tan ML, Choong PF, Dass CR (2009). Osteosarcoma: Conventional treatment vs. gene therapy. Cancer Biol Ther, 8, 106-17. https://doi.org/10.4161/cbt.8.2.7385
  20. Thomas DM, Johnson SA, Sims NA, et al (2004). Terminal osteoblast differentiation, mediated by runx2 and p27KIP1, is disrupted in osteosarcoma. J Cell Biol, 167, 925-34. https://doi.org/10.1083/jcb.200409187
  21. Wu Z, Yang S, Weng X, Liu X (2011). MicroRNA-21 is involved in osteosarcoma cell invasion and migration. Med Oncol, 28, 1469-74. https://doi.org/10.1007/s12032-010-9563-7
  22. Zhang W, Tan W, Wu X, et al (2013). A NIK-IKKa Module Expands ErbB2-Induced Tumor-Initiating Cells by Stimulating Nuclear Export of p27/Kip1. Cancer Cell, 23, 647-59. https://doi.org/10.1016/j.ccr.2013.03.012
  23. Zhao G, Cai C, Yang T, et al (2013). MicroRNA-221 induces cell survival and cisplatin resistance through PI3K/Akt pathway in human osteosarcoma. PLoS ONE, 8, e53906. https://doi.org/10.1371/journal.pone.0053906

Cited by

  1. Gemcitabine for the Treatment of Patients with Osteosarcoma vol.15, pp.17, 2014, https://doi.org/10.7314/APJCP.2014.15.17.7159
  2. MicroRNA-20a promotes the proliferation and cell cycle of human osteosarcoma cells by suppressing early growth response 2 expression vol.12, pp.4, 2015, https://doi.org/10.3892/mmr.2015.4098
  3. UHRF1 promotes human osteosarcoma cell invasion by downregulating the expression of E-cadherin in an Rb1-dependent manner vol.13, pp.1, 2015, https://doi.org/10.3892/mmr.2015.4515
  4. Next-generation sequencing reveals novel differentially regulated mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in pancreatic cancer vol.14, pp.1, 2015, https://doi.org/10.1186/s12943-015-0358-5
  5. miRNA-24-3p promotes cell proliferation and inhibits apoptosis in human breast cancer by targeting p27Kip1 vol.34, pp.2, 2015, https://doi.org/10.3892/or.2015.4025
  6. Demethylation of microRNA-142 induced by demethylation agents plays a suppressive role in osteosarcoma cells pp.1792-1082, 2015, https://doi.org/10.3892/ol.2015.3036
  7. miRNAs Related to Skeletal Diseases vol.25, pp.17, 2016, https://doi.org/10.1089/scd.2016.0133
  8. MiR-193a-3p and miR-193a-5p suppress the metastasis of human osteosarcoma cells by down-regulating Rab27B and SRR, respectively vol.33, pp.4, 2016, https://doi.org/10.1007/s10585-016-9783-0
  9. MicroRNA-802 plays a tumour suppressive role in tongue squamous cell carcinoma through directly targeting MAP2K4 vol.50, pp.3, 2017, https://doi.org/10.1111/cpr.12336
  10. Chromosome 21-Encoded microRNAs (mRNAs): Impact on Down’s Syndrome and Trisomy-21 Linked Disease pp.1573-6830, 2017, https://doi.org/10.1007/s10571-017-0514-0
  11. Involvement and Clinical Aspects of MicroRNA in Osteosarcoma vol.17, pp.6, 2016, https://doi.org/10.3390/ijms17060877
  12. Prognostic Value of MicroRNAs in Preoperative Treated Rectal Cancer vol.17, pp.4, 2016, https://doi.org/10.3390/ijms17040568
  13. Investigation of crucial genes and microRNAs in conventional osteosarcoma using gene expression profiling analysis vol.16, pp.5, 2017, https://doi.org/10.3892/mmr.2017.7506
  14. MicroRNA-199a-5p promotes tumour growth by dual-targeting PIAS3 and p27 in human osteosarcoma vol.7, pp.1, 2017, https://doi.org/10.1038/srep41456
  15. MiR-216b inhibits osteosarcoma cell proliferation, migration, and invasion by targeting Forkhead Box M1 pp.07302312, 2018, https://doi.org/10.1002/jcb.27822
  16. in human osteosarcoma vol.70, pp.5, 2018, https://doi.org/10.1002/iub.1710