DOI QR코드

DOI QR Code

Biotransformation, a Promising Technology for Anti-cancer Drug Development

  • Gao, Fei (State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine) ;
  • Zhang, Jin-Ming (State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau) ;
  • Wang, Zhan-Guo (College of Life Sciences, Sichuan University) ;
  • Peng, Wei (State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine) ;
  • Hu, Hui-Ling (State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine) ;
  • Fu, Chao-Mei (State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine)
  • Published : 2013.10.30

Abstract

With the high morbidity and mortality caused by cancer, finding new and more effective anti-cancer drugs is very urgent. In current research, biotransformation plays a vital role in the research and development of cancer drugs and has obtained some achievements. In this review, we have summarized four applications as follows: to exploit novel anti-cancer drugs, to improve existing anti-cancer drugs, to broaden limited anti-cancer drug resources and to investigate correlative mechanisms. Three different groups of important anti-cancer compounds were assessed to clarify the current practical applications of biotransformation in the development of anti-cancer drugs.

Keywords

Biotransformation;anti-cancer drugs;development;practical application

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Abe K, Inoue O, Yumioka E (1990). Yumioka, Biliary excretion of metabolites of baicalin and baicalein in rats. Chem Pharm Bull (Tokyo), 38, 209-11.
  2. Ahmedin J, Melissa MC, Carol D, Elizabeth MW (2010). Global patterns of cancer incidence and mortality rates and trends. Cancer Epidem Biomar, 19, 1893-907. https://doi.org/10.1158/1055-9965.EPI-10-0437
  3. Amnat E, Anake K, Celine B, et al (2012). Secondary metabolites from a culture of the fungus Neosartorya pseudofischeri and their in vitro cytostatic activity in human cancer cells. Planta Med, 78, 1767-76. https://doi.org/10.1055/s-0032-1315301
  4. An DS, Cui CH, Lee HG, et al (2010). Identification and characterization of a novel Terrabacter ginsenosidimutans sp. nov. beta-glucosidase that transforms ginsenoside $Rb_1$ into the rare gypenosides XVII and LXXV. Appl Environ Microb, 76, 5827-36. https://doi.org/10.1128/AEM.00106-10
  5. Che QM, Huang XL, Li YM, et al (2001). Studies on Metabolites of Baicalin in Human Urine. Chin J Chinese Mater Med, 26, 768-9.
  6. Chen JH, Huang SL, Zhu BZ (2006). Application of Molecular Distillation Technology In Natural Medication Separation& Purification. Chin J MAP, 23, 105-8.
  7. Chen MX, Wang DY (2009). Research progress of natural product by extraction and separation technology. Chin Med Her, 6, 9-12.
  8. Chen XP, Qian LL, Jiang H, Chen JH (2011). Ginsenoside $Rg_3$ inhibits CXCR4 expression and related migrations in a breast cancer cell line. Int J Clin Oncol, 16, 519-23. https://doi.org/10.1007/s10147-011-0222-6
  9. Chen GT, Yang X, Zhai XG, Yang M (2013). Microbial transformation of 20 (S)-protopanaxatriol by Absidia corymbifera and their cytotoxic activities against two human prostate cancer cell lines. Biotechnol Lett, 35, 91-5. https://doi.org/10.1007/s10529-012-1053-x
  10. Chen JC, Li ZL, Chen AY, et al (2013). Inhibitory effect of baicalin and baicalein on ovarian cancer cells. Int J Mol Sci, 14, 6012-25. https://doi.org/10.3390/ijms14036012
  11. Cheng R, Xian H (2010). Application of Affinity chromatography in screening active constituents from natural medicine. China Pharmaceuticals, 19, 19-21.
  12. Cheng YH, Li LA, Lin PP, et al (2012). Baicalein induces G1 arrest in oral cancer cells by enhancing the degradation of cyclin D1 and activating AhR to decrease Rb phosphorylation. Toxicol Appl Pharm, 263, 360-7. https://doi.org/10.1016/j.taap.2012.07.010
  13. Chung KS, Cho SH, Shin JS, et al (2013). Ginsenoside $Rh_2$ induces cell cycle arrest and differentiation in human leukemia cells by upregulating TGF-beta expression. Carcinogenesis, 34, 331-40. https://doi.org/10.1093/carcin/bgs341
  14. Cui CH, Kim SC, Im WT (2013). Characterization of the ginsenoside-transforming -glucosidase from Actinosynnema mirum and bioconversion of major ginsenosides into minor ginsenosides. Appl Microbiol Biot, 97, 649-59. https://doi.org/10.1007/s00253-012-4324-5
  15. Dan X, Yi Z, Jianhua Z, et al (2011). Biotransformation of a taxadiene by ginkgo cell cultures and the tumor multi-drug resistant reversal activities of the metabolites. Chem Pharm Bull, 59, 1038-41. https://doi.org/10.1248/cpb.59.1038
  16. David RK, Barry RG (1994). Evaluation of new drug Paclitaxel (Taxol). Pharmacotherapy, 14, 3-34.
  17. Edyta KS, Jadwiga DG, Jan O (2007). Microbial transformation of baicalin and baicalein. J Mol Cata B-Enzym, 49, 113-7. https://doi.org/10.1016/j.molcatb.2007.08.009
  18. Eric JB (2004). Supercritical and near-critical $CO_2$ in green chemical synthesis and processing. J Supercrit Fluid, 28, 121-91. https://doi.org/10.1016/S0896-8446(03)00029-9
  19. Emily M (Ed.) (2010). Biotransformation, in: Cleveland,C.J. (Ed.), Encyclopedia of Earth, The Encyclopedia of Earth, Environmental Information Coalition, National Council for Science and the Environment, Washington, DC., http://www.eoearth.org/article/Biotransformation?topic=58074
  20. Ferlay J, Shin HR, Bray F, et al (2008). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 127, 2893-917.
  21. He M, Qiu DQ, Bo SJ (2007). Biotransformation of baicalin by aspergillus oryzae activated twice and purification and determination of transformation product. J Guangdong Ocean Univ, 27, 41-4.
  22. Gao J, Xu WJ, Fang Q, et al (2013). Efficient biotransformation for preparation of pharmaceutically active ginsenoside Compound K by Penicillium oxalicum sp. 68. Ann Microbiol, 63, 139-49. https://doi.org/10.1007/s13213-012-0454-3
  23. Gary S, Yang XS, Joe S, et al (1996). Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology, 142, 435-40. https://doi.org/10.1099/13500872-142-2-435
  24. Hao H, Chang-Hao C, Jin-Kwang K, et al (2012). Enzymatic Biotransformation of Ginsenoside Rb and Gypenoside XVII into Ginsenosides Rd 1-glucosidase from Flavobacterium johnsoniae. J Gins Res, 36, 418-24. https://doi.org/10.5142/jgr.2012.36.4.418
  25. Hideo H, Ryuichi S, Takema N, et al (2002). Prevention of growth and metastasis of murine melanoma through enhanced natural-killer cytotoxicity by fatty acid-conjugate of protopanaxatriol. Biol Pharm Bull, 25, 861-6. https://doi.org/10.1248/bpb.25.861
  26. Hiltrud L, Andreas S, Biotransformation, in Encyclopedia of life support systems, http://www.eolss.net/sample-chapters/c17/E6-58-04-06.pdf.
  27. Hoang VA, Kim YJ, Nguyen NL, Yang DC (2013). Chryseobacterium yeoncheonense sp. nov., with ginsenoside converting activity isolated from soil of a ginseng field. Arch Microbiol, 195, 463-71.. https://doi.org/10.1007/s00203-013-0898-2
  28. Hou JG, Xue JJ, Sun MQ, et al (2012). Highly selective microbial transformation of major ginsenoside $Rb_1$ to gypenoside LXXV by Esteya vermicola CNU120806. J Appl Microbiol, 113, 807-14. https://doi.org/10.1111/j.1365-2672.2012.05400.x
  29. Hou JG, Xue JJ, Wang CY, et al (2012). Microbial transformation of ginsenoside $Rg_3$ to ginsenoside $Rh_2$ by Esteya vermicola CNU 120806. World J Microb Biot, 28, 1807-11. https://doi.org/10.1007/s11274-011-0946-5
  30. Israel R, Susan BH (1991). Studies with RP 56976 (taxotere): a semisynthetic analogue of taxol. J Nat Cancer I, 83, 288-91. https://doi.org/10.1093/jnci/83.4.288
  31. Hsiao CJ, Hsiao SH, Chen WL, et al (2012). Pycnidione, a fungus-derived agent, induces cell cycle arrest and apoptosis in A549 human lung cancer cells. Chem-Biol Interac, 197, 23-30. https://doi.org/10.1016/j.cbi.2012.03.004
  32. Huang KF, zhang GD, Huang YQ, Diao Y (2012). Wogonin induces apoptosis and down-regulates survivin in human breast cancer MCF-7 cells by modulating PI3K-AKT pathway. Int Immunopharmacol, 12, 334-41. https://doi.org/10.1016/j.intimp.2011.12.004
  33. Igor VZ, Norbert M, Quet-Fah A, et al (2005). Liposome-encapsulated vincristine, vinblastine and vinorelbine: a comparative study of drug loading and retention. J Control Release, 104, 103-11. https://doi.org/10.1016/j.jconrel.2005.01.010
  34. Isuru W, Li YX, Vo TS, et al (2013). Induction of apoptosis in human cervical carcinoma HeLa cells by neoechinulin A from marine-derived fungus Microsporum sp. Process Biochem, 48, 68-72. https://doi.org/10.1016/j.procbio.2012.11.012
  35. Jean AY, Katherine HRT (2012). Update on taxane development: new analogs and new formulations. Drug Des Devel Ther, 6, 371-84.
  36. Ji YS, Jung ML, Heon SS, et al (2012). Anti-cancer effect of ginsenoside $F_2$ against glioblastoma multiforme in xenograft model in SD rats. J Gins Res, 36, 86-92. https://doi.org/10.5142/jgr.2012.36.1.86
  37. Jin XF, Kim JK, Liu QM, et al (2013). Sphingomonas ginsenosidivorax sp. nov., with the ability to transform ginsenosides. Anton Leeuw, 103, 1359-67. https://doi.org/10.1007/s10482-013-9916-2
  38. Kathryn MK, Wong CH (2001). Enzymes for chemical synthesis. Nature, 409, 232-40. https://doi.org/10.1038/35051706
  39. Kehrer DFS, Soepenberg O, Loos WJ, Verweij J, Sparreboom A (2001). Sparreboom, Modulation of camptothecin analogs in the treatment of cancer: a review. Anticancer Drug, 12, 89-105. https://doi.org/10.1097/00001813-200102000-00002
  40. Kim JK, Cui CH, Liu QM, et al (2013). Mass production of the ginsenoside $Rg_3$ (S) through the combinative use of two glycoside hydrolases. Food Chem, 141, 1369-77. https://doi.org/10.1016/j.foodchem.2013.04.012
  41. Kim BJ, Nah SY, Jeon JH, So I, Kim SJ (2011). Transient receptor potential melastatin 7 channels are involved in ginsenoside $Rg_3$-induced apoptosis in gastric cancer cells. Basic Clin Pharmacol, 109, 233-9. https://doi.org/10.1111/j.1742-7843.2011.00706.x
  42. Kim JK, Cui CH, Yooh MH, Kim SC, Im WT (2012). Bioconversion of major ginsenosides $Rg_1$ to minor ginsenoside F1 using novel recombinant ginsenoside hydrolyzing glycosidase cloned from Sanguibacter keddieii and enzyme characterization. J Biotechnol, 161, 294-301. https://doi.org/10.1016/j.jbiotec.2012.06.021
  43. Kim SJ, Kim HJ, Kim HR, et al (2012). Antitumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Mol Med Rep, 6, 1443-9.
  44. Kim JK, Liu QM, Park HY, et al (2013). Nocardioides panaciterrulae sp. nov., isolate from soil of a ginseng field, with ginsenoside converting activity. Anton Leeuw, 103, 1385-93. https://doi.org/10.1007/s10482-013-9919-z
  45. Lai MY, Hsiu SL, Tsai SY, Hou YC, Chao PDL (2003). Comparison of metabolic pharmacokinetics of baicalin and baicalein in rats. J Pharm Pharmacol, 55, 205-9. https://doi.org/10.1211/002235702522
  46. Lan Y, Xue LZ, Hong S, et al (2011). Catalase suppression-mediated $H_2O_2$ accumulation in cancer cells by wogonin effectively blocks tumor necrosis factor-induced NF-kappaB activation and sensitizes apoptosis. Cancer Sci, 102, 870-6. https://doi.org/10.1111/j.1349-7006.2011.01874.x
  47. Lee GW, Yoo MH, Shin KC, et al (2013). ${\beta}$-Glucosidase from Penicillium aculeatum hydrolyzes exo-, 3-O-, and 6-O-${\beta}$-glucosides but not 20-O-${\beta}$-glucoside and other glycosides of ginsenosides. Appl Microbiol Biot, 14, 6315-24.
  48. Lin Y, Runjiang Q, Jungui D, Xiaoguang C (2007). Specific methylation and epoxidation of sinenxan A by Mucor genevensis and the multi-drug resistant tumor reversal activities of the metabolites. J Mol Cata B-Enzym, 46, 8-13. https://doi.org/10.1016/j.molcatb.2007.01.007
  49. Li QY, Zu YG, Shi RZ, Yao LP (2006). Review camptothecin: current perspectives. Curr Med Chem, 13, 2021-39. https://doi.org/10.2174/092986706777585004
  50. Li BH, Zhao J, Wang CZ, et al (2011). Ginsenoside $Rh_2$ induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett, 301, 185-92. https://doi.org/10.1016/j.canlet.2010.11.015
  51. Li ML, Yang Z, Shu FL, Su BH, Yi L (2013). Enzymatic Transformation from Protopanaxadiol Ginsenoside $Rb_1$ into Rare Ginsenoside C-K and Its Anti-cancer Activity. Adv Mater Res, 641-2, 752-5. https://doi.org/10.4028/www.scientific.net/AMR.641-642.752
  52. Liu LW, Si L, Ren SY, Liu YH (2012). Biotransformation of Bacicalin by Human Intestinal Bacteria. Nat Prod Res Dev, 24, 1437-40.
  53. Liu X, Chen RD, Xie D, et al (2012). Microbial transformations of taxadienes and the multi-drug resistant tumor reversal activities of the metabolites. Tetrahedron, 68, 9539-49. https://doi.org/10.1016/j.tet.2012.09.091
  54. Mansukhlal CW, Harold LT, Monroe EW, Philip C, Andrew TM (1971). Plant anti-cancer agents. VI. The isolation and structure of taxol, a novel antileukemic and anti-cancer agent from Taxus brevifolia. J Am Chem Soc, 93, 2325-7. https://doi.org/10.1021/ja00738a045
  55. Mohammad HM, Mohsen F, Mercedes B, Hassan R, Alireza G (2012). Ghassempour, Isolation and characterization of Stemphylium sedicola SBU-16 as a new endophytic taxol-producing fungus from Taxus baccata grown in Iran. FEMS Microbiol Lett, 328, 122-9. https://doi.org/10.1111/j.1574-6968.2011.02488.x
  56. Nicholas CW, Keith J, Susan M, et al (1992). Effects of genetic, epigenetic, and environmental factors on taxol content in Taxus brevifolia and related species. J Nat Prod, 55, 432-40. https://doi.org/10.1021/np50082a005
  57. Pan XY, Guo H, Han J, et al (2012). Ginsenoside $Rg_3$ attenuates cell migration via inhibition of aquaporin 1 expression in PC-3M prostate cancer cells. Eur J Pharmacol, 683, 27-34. https://doi.org/10.1016/j.ejphar.2012.02.040
  58. Nicoletti MI, Colombo T, Rossi C, et al (2000). IDN5109, a taxane with oral bioavailability and potent anti-cancer activity. Cancer Res, 60, 842-6.
  59. Norikazu K, Takehiko M, Yuka K, et al (2008). The critical role of invading peripheral macrophage-derived interleukin-6 in vincristine-induced mechanical allodynia in mice. Eur J Pharmacol, 592, 87-92. https://doi.org/10.1016/j.ejphar.2008.07.008
  60. Noh KH, Oh DK (2009). Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable beta-glycosidase from Sulfolobus acidocaldarius. Bio Pharm Bull, 32, 1830-5. https://doi.org/10.1248/bpb.32.1830
  61. Park CS, Yoo MH, Noh KH, Oh DK (2010). Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases. Appl Microbiol Biot, 87, 9-19. https://doi.org/10.1007/s00253-010-2567-6
  62. Potter GA, Patterson LH, Wanogho E, et al (2002). The cancer preventative agent resveratrol is converted to the anti-cancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br J Cancer, 86, 774-8. https://doi.org/10.1038/sj.bjc.6600197
  63. Qi LW, Wang CZ, Yuan CS (2011). Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry, 72, 689-99. https://doi.org/10.1016/j.phytochem.2011.02.012
  64. Quan LH, Min JW, Yang DU, Kim YJ, Yang DC (2012). Enzymatic biotransformation of ginsenoside $Rb_1$ to 20 (S)-$Rg_3$ by recombinant beta-glucosidase from Microbacterium esteraromaticum. Appl Microbiol Biot, 94, 377-84. https://doi.org/10.1007/s00253-011-3861-7
  65. Quan LH, Min JW, Jin Y, et al (2012). Enzymatic biotransformation of ginsenoside $Rb_1$ to compound K by recombinant beta-glucosidase from Microbacterium esteraromaticum. J Agr Food Chem, 60, 3776-81. https://doi.org/10.1021/jf300186a
  66. Samuel JD, John JM, Wendy BY, et al (1996). Total Synthesis of Baccatin III and Taxol. J Am Chem Soc, 118, 2843-59. https://doi.org/10.1021/ja952692a
  67. Quan LH, Wang C, Jin Y, et al (2013). Isolation and characterization of novel ginsenoside-hydrolyzing glycosidase from Microbacterium esteraromaticum that transforms ginsenoside $Rb_2$ to rare ginsenoside 20 (S)-$Rg_3$. Anton Leeuw, 104, 129-37. https://doi.org/10.1007/s10482-013-9933-1
  68. Quan LH, Kim YJ, Li GH, Choi KT, Yang DC (2013). Microbial transformation of ginsenoside $Rb_1$ to compound K by Lactobacillus paralimentarius. World J Microb Biot, 29, 1001-7. https://doi.org/10.1007/s11274-013-1260-1
  69. Ran NQ, Zhao LS, Chen ZM, Tao JH (2008). Recent applications of biocatalysis in developing green chemistry for chemical synthesis at the industrial scale. Green Chem, 10, 361-72. https://doi.org/10.1039/b716045c
  70. Seock MK, Hua Z, Myeong SP, Geun EJ (2011). ${\beta}$-Glucuronidase Activity from Lactobacillus delbrueckii $Rh_2$ and Its Use for Biotransformation of Baicalin and Wogonoside. J Korean Soc Appl Biol Chem, 54, 275-80. https://doi.org/10.3839/jksabc.2011.043
  71. Sergio R (2001). Biocatalytic modification of natural products. Curr Opin Chem Biol, 5, 106-11. https://doi.org/10.1016/S1367-5931(00)00178-2
  72. Sheela C (2012). Endophytic fungi: novel sources of anti-cancer lead molecules. Appl Bicrobiol Bio, 95, 47-59. https://doi.org/10.1007/s00253-012-4128-7
  73. Shen KZ, Gao S, Gao YX, et al (2012). Novel dibenzo[b,e] oxepinones from the freshwater-derived fungus Chaetomium sp. YMF 1.02105. Planta Med, 78, 1837-43. https://doi.org/10.1055/s-0032-1327828
  74. Sreekanth D, Sushim GK, Syed A, Khan BM, Ahmad A (2011). Molecular and Morphological Characterization of a Taxol-Producing Endophytic Fungus, Gliocladium sp., from Taxus baccata. Mycobiology, 39, 151-7. https://doi.org/10.5941/MYCO.2011.39.3.151
  75. Taha HS, MK El-Bahr, MM Seif-El-Nasr (2009). In vitro studies on Egyptian Catharanthus roseus (L.) G.Don. IV: manipulation of some amino acids as precursors for enhanced of indole alkaloids production in suspension cultures. Aust J Basic Appl Sci, 3, 3137-44.
  76. Stierle A, Strobel G, Stierle D (1993). Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science, 260, 214-6. https://doi.org/10.1126/science.8097061
  77. Su JP, So YY, Geun EJ, Myeong SP (2012). Whole Cell Biotransformation of Major Ginsenosides Using Leuconostocs and Lactobacilli. Food Sci Biotechnol, 21, 839-44. https://doi.org/10.1007/s10068-012-0108-z
  78. Sun MK, So YL, Jin SC, et al (2010). Combination of ginsenoside $Rg_3$ with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-kappaB. Eur J Pharmacol, 631, 1-9. https://doi.org/10.1016/j.ejphar.2009.12.018
  79. Tang XP, Tang GD, Fang CY, Liang ZH, Zhang LY (2013). Effects of ginsenoside $Rh_2$ on growth and migration of pancreatic cancer cells. World J Gastroentero, 19, 1582-92. https://doi.org/10.3748/wjg.v19.i10.1582
  80. Trang TM, JeongYong M, YeonWoo S, et al (2012). Ginsenoside $F_2$ induces apoptosis accompanied by protective autophagy in breast cancer stem cells. Cancer Lett, 321, 144-53. https://doi.org/10.1016/j.canlet.2012.01.045
  81. Wang YY, Liu JH, Yu BY (2005). Biotransformation of Flavonoids by Streptomyces griseus ATCC 13273. Pharm Biotechnol, 12, 308-11.
  82. Wang H, Gao P, Liao Y, Wang J, Sun QL (2009). The studies on the transformation from baical in into baiealein microbial transformation. J Sichuan Univ (Nat Sc Edit ), 46, 795-8.
  83. Wang CZ, Du GJ, Zhang ZY, et al (2012). Ginsenoside compound K, not $Rb_1$, possesses potential chemopreventive activities in human colorectal cancer. Int J Oncol, 40, 1970-6.
  84. Yan Q, Zhou W, Shi XL, et al (2010). Biotransformation pathways of ginsenoside $Rb_1$ to compound K by ${\beta}$-glucosidases in fungus Paecilomyces Bainier sp. 229. Process Biochem, 45, 1550-6. https://doi.org/10.1016/j.procbio.2010.06.007
  85. Wen Y, Fan Y, Zhang M, Feng YQ (2005). Determination of camptothecin and 10-hydroxycamptothecin in human plasma using polymer monolithic in-tube solid phase microextraction combined with high-performance liquid chromatography. Anal Bioanal Chem, 382, 204-10. https://doi.org/10.1007/s00216-005-3194-4
  86. Wu X, Ojima I (2004). Tumor specific novel taxoid-monoclonal antibody conjugates. Curr Med Chem, 11, 429-38. https://doi.org/10.2174/0929867043455963
  87. Wu LP, Jin Y, Yin CR, Bai LL (2012). Co-transformation of Panax major ginsenosides $Rb_1\;and\;Rg_1$ to minor ginsenosides CK and F1 by Cladosporium cladosporioides. J Ind Microbio Bio, 39, 521-7. https://doi.org/10.1007/s10295-011-1058-9
  88. Yang L, Wang Q, Li DX, et al (2013). Wogonin enhances anti-cancer activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated downregulation of cFLIPL and IAP proteins. Apoptosis, 18, 618-26. https://doi.org/10.1007/s10495-013-0808-8
  89. Yuan HD, Quan HY, Zhang Y, Kim SH, Chung SH (2010). 20(S)-Ginsenoside $Rg_3$ -induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol Med Rep, 3, 825-31.
  90. Yuan J, He Z, Wu J, Lin Y, Zhu X (2011). A novel adriamycin analogue derived from marine microbes induces apoptosis by blocking Akt activation in human breast cancer cells.Mol Med Rep, 4, 261-5.
  91. Zhan YL, Zou JH, Ma XJ, Dai JG (2005). Biotransformation of 14-deacetoxyl sinenxan A by Ginkgo cell suspension cultures and the cytotoxic activity evaluation. J Mol Cata B-Enzym, 36, 43-6. https://doi.org/10.1016/j.molcatb.2005.08.003
  92. Zhang HB, Lu P, Guo QY, Zhang ZH, Meng XY (2013). Baicalein induces apoptosis in esophageal squamous cell carcinoma cells through modulation of the PI3K/Akt pathway. Oncol Lett, 5, 722-8.
  93. Zhang GL, Guo B, Li HY, et al (2000). Preliminary study on the isolation of endophytic fungus of Catharanthus roseusand its fermentation to produce products of therapeutic value. Chin Trad Herbal Drugs, 31, 805-7.
  94. Zhang JY, Wu HY, Xia XK, et al (2007). Anthracenedione derivative 1403P-3 induces apoptosis in KB and KBv200 cells via reactive oxygen species-independent mitochondrial pathway and death receptor pathway. Cancer Bio Ther, 6, 1413-21. https://doi.org/10.4161/cbt.6.9.4543
  95. Zhang P, Liu TT, Zhou PP, Li ST, Yu LJ (2011). Agrobacterium tumefaciens-mediated transformation of a taxol-producing endophytic fungus, Cladosporium cladosporioides MD2. Curr Microbiol, 62, 1315-20. https://doi.org/10.1007/s00284-010-9864-2
  96. Zhao K, Sun L, Wang X, et al (2011). Screening of high taxol producing fungi by mutagenesis and construction of subtracted cDNA library by suppression subtracted hybridization for differentially expressed genes. Acta Microbiol Sinica, 51, 923-33.
  97. Zhao Q, Wang J, Zou MJ, et al (2010). Wogonin potentiates the anti-cancer effects of low dose 5-fluorouracil against gastric cancer through induction of apoptosis by down-regulation of NF-kappaB and regulation of its metabolism, Toxicol Lett, 197, 201-10. https://doi.org/10.1016/j.toxlet.2010.05.019
  98. Zhou XW, Zhu HF, Liu L, Lin J, Tang KX (2010). A review: recent advances and future prospects of taxol-producing endophytic fungi. Appl Microbiol Biot, 86, 1707-17. https://doi.org/10.1007/s00253-010-2546-y
  99. Zhu GP, Lin LZ, Pan WJ, et al (1978). A research for converting camptothecin into 10-hydroxycamptothecin by biotransformation technology. Chin Sci Bull, 12, 761-2.
  100. Zhu F, Chen G, Wu J, Pan J (2013). Structure revision and cytotoxic activity of marinamide and its methyl ester, novel alkaloids produced by co-cultures of two marine-derived mangrove endophytic fungi. Nat Prod Res. DOI:10.1080/14786419.2013.800980. https://doi.org/10.1080/14786419.2013.800980

Cited by

  1. Biotransformation of the Principal Ginsenosides of Panax ginseng Into Minor Glycosides Through the Action of Bacterium Paenibacillus sp. BG134 vol.50, pp.4, 2014, https://doi.org/10.1007/s10600-014-1054-1
  2. Biotransformation of Ginsenosides Re and Rg1 by the Bacterium Microbacterium sp. GT35 vol.51, pp.1, 2015, https://doi.org/10.1007/s10600-015-1208-9
  3. Review on Bifidobacterium bifidum BGN4: Functionality and Nutraceutical Applications as a Probiotic Microorganism vol.17, pp.9, 2016, https://doi.org/10.3390/ijms17091544
  4. Finding and Producing Probiotic Glycosylases for the Biocatalysis of Ginsenosides: A Mini Review vol.21, pp.5, 2016, https://doi.org/10.3390/molecules21050645