Model Prediction and Experiments for the Electrode Design Optimization of LiFePO4/Graphite Electrodes in High Capacity Lithium-ion Batteries

  • Yu, Seungho (Center for Energy Convergence, Korea Institute of Science and Technology) ;
  • Kim, Soo (Center for Energy Convergence, Korea Institute of Science and Technology) ;
  • Kim, Tae Young (Center for Energy Convergence, Korea Institute of Science and Technology) ;
  • Nam, Jin Hyun (School of Mechanical and Automotive Engineering, Daegu University) ;
  • Cho, Won Il (Center for Energy Convergence, Korea Institute of Science and Technology)
  • Received : 2012.08.27
  • Accepted : 2012.10.05
  • Published : 2013.01.20


$LiFePO_4$ is a promising active material (AM) suitable for use in high performance lithium-ion batteries used in automotive applications that require high current capabilities and a high degree of safety and reliability. In this study, an optimization of the electrode design parameters was performed to produce high capacity lithium-ion batteries based on $LiFePO_4$/graphite electrodes. The electrode thickness and porosity (AM density) are the two most important design parameters influencing the cell capacity. We quantified the effects of cathode thickness and porosity ($LiFePO_4$ electrode) on cell performance using a detailed one-dimensional electrochemical model. In addition, the effects of those parameters were experimentally studied through various coin cell tests. Based on the numerical and experimental results, the optimal ranges for the electrode thickness and porosity were determined to maximize the cell capacity of the $LiFePO_4$/graphite lithium-ion batteries.


Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)


  1. Huang, H.; Yin, S. C.; Nazar, L. F. Electrochem. Solid State Lett. 2001, 4, A170.
  2. Chen, Z.; Dahn, J. R. J. Electrochem. Soc. 2002, 149, A1184.
  3. Prosini, P. P.; Zane, D.; Pasquali, M. Electrochim. Acta 2001, 46, 3517.
  4. Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Nat. Mater. 2002, 1, 123.
  5. Wang, D.; Li, H.; Shi, S.; Huang, X.; Chen, L. Electrochim. Acta 2005, 50, 2955.
  6. Shi, S.; Liu, L.; Ouyang, C.; Wang, D. S.; Wang, Z.; Chen, L.; Huang, X. Phys. Rev. B 2003, 68, 195108.
  7. Sides, C. R.; Croce, F.; Young, V. Y.; Martion, C. R.; Scrosati, B. Electrochem. Solid-State Lett. 2005, 8, A484.
  8. Kim, D. H.; Kim, J. Electrochem. Solid-State Lett. 2006, 9, A439.
  9. Jiao, F.; Hill, A. H.; Harrison, A.; Berko, A.; Chadwick, A.; Bruce, P. G. J. Am. Chem. Soc. 2008, 130, 5262.
  10. Dominko, R.; Bele, M.; Goupil, J. M.; Gaberscek, M.; Hanzel, D.; Arcon, I.; Jamnik, J. Chem. Mater. 2007, 19, 2960.
  11. Yu, D. Y. W.; Donoue, K.; Inoue, T.; Fujimoto, M.; Fujitani, S. J. Electrochem. Soc. 2006, 153, 835.
  12. Fongy, C.; Gaillot, A. C.; Jouanneau, S.; Guyomard, D.; Lestriez, B. J. Electrochem. Soc. 2010, 157, 885.
  13. Gaberscek, M. J. Power Sources 2009, 189, 22.
  14. Albertus, P.; Couts, J.; Srinivasan, V.; Newman, J. J. Power Sources 2008, 183, 771.
  15. Nyman, A.; Zavalis, T. G.; Elger, R.; Behm, M.; Lindbergh, G. J. Electrochem. Soc. 2010, 157, A1236.
  16. Chen, Y. H.; Wang, C. W.; Zhang, X.; Sastry, A. M. J. Power Sources 2010, 195, 2851.
  17. Safaria, M.; Delacourt, C. J. Electrochem. Soc. 2011, 158, 63.
  18. Doyle, M.; Fuller, T. F.; Newman, J. J. Electrochem. Soc. 1993, 140, 1526.
  19. Fuller, T. F.; Doyle, M.; Newman, J. J. Electrochem. Soc. 1994, 141, 1.
  20. Fuller, T. F.; Doyle, M.; Newman, J. J. Electrochem. Soc. 1994, 141, 982.
  21. Doyle, M.; Newman, J. J. Electrochem. Soc. 1996, 143, 1890.
  22. Srinivasan, V.; Newman, J. J. Electrochem. Soc. 2004, 151, 1517.
  23. Srinivasan, V.; Newman, J. J. Electrochem. Soc. 2004, 151, 1530.
  24. Singh, G. K.; Ceder, G.; Bazant, M. Z. Electrochim. Acta 2008, 53, 7599.
  25. Tang, M.; Carter, W. C.; Chiang, Y. M. Annu. Rev. Mater. Res. 2010, 40, 501.
  26. Tang, M.; Belak, J. F.; Dorr, M. R. J. Phys. Chem. C 2011, 115, 4922.

Cited by

  1. Structures as a High Performance Anode Material for Lithium Ion Batteries vol.11, pp.3, 2014,
  2. Evaluation of Current, Future, and Beyond Li-Ion Batteries for the Electrification of Light Commercial Vehicles: Challenges and Opportunities vol.164, pp.11, 2017,
  3. Understanding limiting factors in thick electrode performance as applied to high energy density Li-ion batteries vol.47, pp.3, 2017,
  4. Toward Low-Cost, High-Energy Density, and High-Power Density Lithium-Ion Batteries vol.69, pp.9, 2017,
  5. for Lithium-Ion Battery Industrial Applications vol.7, pp.12, 2017,
  6. Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation vol.161, pp.8, 2014,
  7. Optimizing Areal Capacities through Understanding the Limitations of Lithium-Ion Electrodes vol.163, pp.2, 2016,
  8. Elasticity and Size Effects on the Electrochemical Response of a Graphite, Li-Ion Battery Electrode Particle vol.163, pp.3, 2016,
  9. An Inverse Method for Estimating the Electrochemical Parameters of Lithium-Ion Batteries vol.164, pp.2, 2017,
  10. Experimental and Modeling Analysis of Graphite Electrodes with Various Thicknesses and Porosities for High-Energy-Density Li-Ion Batteries vol.165, pp.7, 2018,