DOI QR코드

DOI QR Code

Effect of an Offshore Fish Culture System on the Benthic Polychaete Community

외해가두리 양식이 저서다모류군집에 미치는 영향

  • Jung, Rae-Hong (Marine Environment Research Division, National Fisheries Research & Development Institute(NFRDI)) ;
  • Yoon, Sang-Pil (Coastal Weland Research Institute, National Fisheries Research & Development Institute(NFRDI)) ;
  • Kim, Youn-Jung (Marine Environment Research Division, National Fisheries Research & Development Institute(NFRDI)) ;
  • Lee, Won-Chan (Marine Environment Research Division, National Fisheries Research & Development Institute(NFRDI)) ;
  • Hong, Sok Jin (Marine Environment Research Division, National Fisheries Research & Development Institute(NFRDI)) ;
  • Park, Sung-Eun (Subtropical Fisheries Research Center, Southwest Sea Fisheries Research Institute, National Fisheries Research & Development Institute) ;
  • Oh, Hyung Taik (Marine Environment Research Division, National Fisheries Research & Development Institute(NFRDI))
  • 정래홍 (국립수산과학원 어장환경과) ;
  • 윤상필 (국립수산과학원 갯벌연구소) ;
  • 김연정 (국립수산과학원 어장환경과) ;
  • 이원찬 (국립수산과학원 어장환경과) ;
  • 홍석진 (국립수산과학원 어장환경과) ;
  • 박성은 (국립수산과학원 아열대연구소) ;
  • 오현택 (국립수산과학원 어장환경과)
  • Received : 2013.08.28
  • Accepted : 2013.09.23
  • Published : 2013.11.28

Abstract

Excessive input of organic matters from fish cage farming has been considered as one of the major factors disturbing benthic ecosystem, especially in semi-enclosed coastal waters. Recently offshore aquaculture in the vicinity of Jeju-do has been introduced to minimize that kind of negative impact. This study was conducted to investigate the ecological impacts of offshore aquaculture on the macrobenthic polychaete communities. A total of ten sampling works were carried out for 28 months, spanning from 10 days after starting giving feed to 3 months after stopping giving feed. During the study period, mean current velocity was quite strong with the range of 50 cm/s to 70 cm/s. TOC of surface sediment was constantly low. Significant changes in polychaete community were detected just three months after starting giving feed, which were the increase of the number of species and density at all stations. Up to 18 months after the start of farming, the amount of feed provided played an important role in the fluctuation of the number of species and density, especially at 0 m and 10 m stations. After reducing the amount of feed provided, dominance of some opportunistic species within 10 m distance from fish cages still lasted to the end of aquaculture. However, opportunistic species disappeared 3 months after the end of farming, which indicated the sign of recovery from the disturbance. From these results, the amount of food input and the period of cultivation were critical factors disturbing polychaete community and ensuing changes in this offshore and oligotrophic waters as well. In addition, study on the changes of polychaete community structure before and after fish farming showed more detailed changes in benthic ecological state than geochemical approach did.

반폐쇄적 연안역에서의 해상 어류 가두리 양식은 잉여 유기물로 인해 주변 생태계를 교란시키는 결정적인 요인이 되기 때문에, 최근 해류의 흐름이 강하고 수심이 깊은, 외해적 성격을 보이는 제주 연안에서 외해 가두리 양식 기법이 시범적으로 도입되었다. 본 연구는 새로이 도입한 외해 가두리 양식이 저서다모류군집에 미치는 영향을 알아보고자 사료 투입 열흘 후 첫 조사를 실시하여 양식 종료 3개월 후까지 28개월간 10회에 걸쳐 조사를 실시하였다. 제주 연안에 설치된 가두리 양식장의 평균 유속은 50~70 cm/s로 매우 강하였다. 퇴적물의 총유기탄소량은 조사기간 중 큰 변화가 없었으며, 값 자체도 낮았다. 사료 공급이 시작된 후 3개월 만에 저서다모류군집의 종 수와 밀도가 모든 정점에서 증가하여 초기와는 다른 군집으로 빠르게 변화하였다. 양식시작 후 18개월 까지 가두리로부터 0 m와 10 m 지점 저서다모류군집의 종 수와 밀도는 사료 공급량과 매우 밀접한 관계가 있었다. 이 후 가두리로부터 10 m 범위 내의 저서다모류군집은 사료 공급량이 감소하고, 퇴적물내 유기물함량의 증가가 없었음에도 불구하고 기회종이 우점하는 교란된 군집으로 변화하였으며, 이는 양식 종료 시까지 지속되었다. 그러나 양식 종료 후 3개월 만에 기회종은 일시에 사라져 군집이 교란으로부터 빠르게 회복되고 있음을 암시하였다. 제주 연안에서의 해상 가두리 양식은 외해적 성격과 빈영양의 해역적 특성에도 불구하고 고영양성분의 유기물이 과잉으로 유입됨에 따라 저서다모류군집을 빠르게 변화시켰으며, 유입되는 사료량과 양식기간은 군집의 교란과 뒤이은 천이에 결정적인 영향을 주었다. 한편, 저서다모류군집에 대한 연구는 외해 환경에서의 가두리 양식 전후 저서생태계의 변화 양상을 퇴적물에 대한 지화학적 분석 결과보다 잘 반영하고 있음을 알 수 있다.

Keywords

Acknowledgement

Grant : 연안어장 생태계 통합평가 및 관리 연구

Supported by : 국립수산과학원

References

  1. Aure, J. and A. Stiberbrandt, 1989. On the influence of topographic factors upon the oxygen consumption rate in sill basins of fjords. Estuar. Coast. Shelf Sci., 28: 59-69. https://doi.org/10.1016/0272-7714(89)90041-3
  2. Belan, T.A., 2004. Marine environmental quality assessment using polychaete taxocene characteristics in Vancouver Harbour. Mar. Env. Res., 57: 89-101. https://doi.org/10.1016/S0141-1136(03)00062-X
  3. Bellan, C., 1970. Pollution by sewage in Marseilles. Mar. Poll. Bull., 1: 59-60. https://doi.org/10.1016/0025-326X(70)90124-4
  4. Braaten, B., 1991. Impacts of pollution from aquaculture in six Nordic countries. Release of nutrients, effects, and waste water treatment. In: Aquaculture and the environment, European Aquaculture Society Special No. 16, edited by De Pauw, N. and J. Joyce, Gent, Belgium, pp. 79-101.
  5. Brooks, K.M., A.R. Stiens, C.V.W. Mahnken and D.B. Blackburn, 2003. Chemical and biological remediation of the benthos near Atlantic salmon farms. Aquacult., 219: 355-377. https://doi.org/10.1016/S0044-8486(02)00528-8
  6. Brooks, K.M., C. Mahnken and C. Nash, 2002. Environmental effects associated with marine netpen waste with emphasis on salmon farming in pacific northwest. In: Responsible marine aquaculture. edit by Skickney, R.R and J.P. MacVey, CABI Publishing, Oxon, pp. 159-203.
  7. Brown, J.R., R.J. Gowen and D.S. McLusky, 1987. The effect of salmon farming on the benthos of a Scottish sea loch. J. Mar. Biol. Ecol., 109: 39-51. https://doi.org/10.1016/0022-0981(87)90184-5
  8. Bybee, D.R. and J.H. Bailey-Brock, 2004. Effect of a Hawaiian open ocean fish culture system on the benthic community. In: Open ocean Aquaculture, edited by Bridger C.A, and V.A. Costa-Pierce, The World Aquaculture Society, Baton Rouge, LA, pp. 119-128.
  9. Carroll, M.L., S. Cochrane, R. Fieler, R. Velvin and P. White, 2003. Organic enrichment of sediments from salmon farming in Norway: environmental factors, management practices, and monitoring techniques. Aquaculture, 226: 165-180. https://doi.org/10.1016/S0044-8486(03)00475-7
  10. Chareonpaich, C., H. Tsutsumi and S. Montani, 1994. Efficiency of the decomposition of organic matter, loaded on the sediment, as a result of the biological activity of Capitella sp.1. Mar. bull., 28(5): 314-318. https://doi.org/10.1016/0025-326X(94)90157-0
  11. Del-Pilar-Ruso, Y., J.A. De-La-Ossa-Carretero, A. Loya-Fermandez, L.M. Ferrero-Vicente, F. Gimenez-Casaiduero, and J.L. Sanchez-Lizaso, 2009. Assessment of soft bottom Polychaeta assemblage affected by a spatial confluence of impacts: sewage and brine discharge. Mar. Poll. Bull., 60: 1930-1938.
  12. Fauchald, K and P.A. Jumars, 1979. The diet of worms: A study of polychaete feeding guilds. Oceanogr. Mar. Biol. Ann. Rev., 17: 193-284.
  13. Findlay, R.H. and L. Walting, 1997. Prediction of benthic impacts for salmon net-pens based on the balance of benthic oxygen supply and demand. Mar. Ecol. Prog. Ser., 155: 147-157. https://doi.org/10.3354/meps155147
  14. Folk, R.L. and W.C. Ward, 1957. Brazos river bar: A study in the significance of grain-size parameters. J. Sed. Pet., 27: 3-27. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  15. Frid, C.L.J. and T.S. Mercer, 1989. Environmental monitoring of caged fish farming in macrotidal environments. Mar. Poll. Bull., 20(8): 379-383. https://doi.org/10.1016/0025-326X(89)90315-9
  16. Gowen, R.J. and N.B. Bradbury, 1987. The ecological impact of salmonid farming in coastal waters: a review. Oceanogra. Mar. Biol. Annu. Rev., 25: 563-533.
  17. Gray, J.S., 1979. Pollution-induced changes in populations. Phil. Trans. R. Soc. (Ser. B), 286: 545-561. https://doi.org/10.1098/rstb.1979.0045
  18. Hall, P.O.J., L.G. Anderson, O. Holby, S. Kollberg and M.O. Samuelson, 1990. Chemical fluxes and mass balances in a marine fish cage farm. II. Carbon. Mar. Ecol. Prog. Ser., 61: 61-73. https://doi.org/10.3354/meps061061
  19. Hevia, M., H. Rosental and R.J. Gowen, 1996. Modelling benthic deposition under fish cages. J. Appl. Ichthyol., 12: 71-74. https://doi.org/10.1111/j.1439-0426.1996.tb00065.x
  20. Holby, O. and P.O.J. Hall, 1991. Chemical fluxes and mass balances in a marine fish cage farm. . Phosphorus. Mar. Ecol. Prog. Ser., 70: 263-272. https://doi.org/10.3354/meps070263
  21. Holmer, M., 1991. Impacts of aquaculture on surrounding sediments: generation of organic-rich sediments. In: Aquaculture and the environment, European Aquaculture Society Special No. 16, edited by De Pauw, N. and J. Joyce, Gent, Belgium, pp. 155-175.
  22. Holmer, M. and E. Kristensen, 1992. Impact of marine fish cage farming on metabolism and sulfate reduction of underlying sediments. Mar. Ecol. Prog. Ser., 80: 191-201. https://doi.org/10.3354/meps080191
  23. Jung, R.H., H.S. Lim, S.S. Kim, J.S. Park, K.A. Jeon, Y.S. Lee, J.S. Lee, K.Y. Kim and W.J. Go, 2002. A study of the macrozoobenthos at the intensive fish farming ground in the southern coast of Korea. The Sea, J. Kor. Soc. Oceanogr., 7(4): 235-246.
  24. Jung, R.H., S.P. Yoon, J.N. Kwon, J.S. Lee, W.C. Lee, J.H. Koo, Y.J. Kim, H.T. Oh and S.E. Park, 2007. Impact of fish farming on Macrobenthic polychaete communities.The Sea, J. Kor. Soc. Oceanogr., 12(3): 151-159.
  25. Karakassis, I., E. Haiziyanni, M. Tsapakis, and W. Plaiti, 1999. Benthic recovery following cessation of fish farming: a series of successes and catastrophes. Mar. Ecol. Ser., 184: 205-218 https://doi.org/10.3354/meps184205
  26. Kwon, J.N., R.H. Jung, Y.S. Kang, K.H. An and W.C. Lee, 2005. Environmental management of marine cage fish using numerical modelling. The Sea, J. Kor. Soc. Oceanogr., 10(4): 181-195.
  27. La Rosa, T., S. Mirto, A. Mazzola and T.L. Maugeri, 2004. Benthic microbial indicators of fish farm impact in a coastal area of the Tyrrhenian Sea. Aquacult., 230: 153-167. https://doi.org/10.1016/S0044-8486(03)00433-2
  28. Lee, H.W., J.H. Bailey-Brock and M.M. McGurr, 2006. Temporal change in the polychaete infaunal community surrounding a Hawaiian mariculture operation. Mar. Ecol. Prog. Ser., 367: 175-185.
  29. Lee, J.S. R.H. Jung, K.H. Kim, J.N. Kwon, W.C. Lee, P.Y. Lee, J.H. Koo and W.J. Choi, 2004a. An evaluation of the environmental effects of marine cage fish farm: I. Estimation of impact region and organic carbon cycling in sediment using sediment oxygen consumption rate and macrozoobenthos. The Sea, J. Kor. Soc. Oceanogr., 9(1): 30-39.
  30. Lee, J.S., K.H. Kim, J. Yu, P.Y. Lee, R.H. Jung, W.C. Lee, J.H. Han and Y.H. Lee, 2004b. Environmental impact assessment by marine cage fish farm: II. Estimation of hygrogen sulfide oxidation rate at $O_2-H_2S$ interface and sulfate reduction rate in anoxic sediment layer. The Sea, J. Kor. Soc. Oceanogr., 9(2): 64-72.
  31. Levin, L., 1984. A. Life history and dispersal pattern in a dense infaunal polychaete assemblage: community structure and response to disturbance. Ecol., 65(4): 1185-1200. https://doi.org/10.2307/1938326
  32. Lin, D.T. and J.H. Bailey-Brock, 2008. Partial recovery of infaunal communities during a fallow period at an open-ocean aquaculture, Mar. Ecol. Prog. Ser., 371: 65-72. https://doi.org/10.3354/meps07675
  33. Lumb, C.M. 1989. Self-pollution by Scottish salmon farms? Mar. Poll. Bull., 20(8): 375-379. https://doi.org/10.1016/0025-326X(89)90314-7
  34. Macleod, C.K., N.A. Moltschaniwskyj and C.M. Crawford, 2006. Evaluation of short-term fallowing as a strategy for the management of recurring organic enrichment under salmon cages. Mar. Poll. Bull., 52: 1458-1466. https://doi.org/10.1016/j.marpolbul.2006.05.007
  35. Macleod, C.K., N.A. Moltschaniwskyj, C.M. Crawford and S.E. Forbes, 2007. Biological recovery from organic enrichment: some systems cope better than others, Mar. Ecol. Prog. Ser., 342: 41-53. https://doi.org/10.3354/meps342041
  36. Martinez-Garcia, E., P. Sanchez-Jerez, F. Aguado-Gimenz, P. Avila, A. Guerrero, J.L. Sanchez-Liazo, V. Fermandez-Gonzalez, N. Gonzalez, J.I. Gairin, C. Carballeria, B. Garcia-Garcia, J. Carreras, J.C. Macias, A. Carballeria and C. Collado, 2013. A meta-analysis approach to the effects of fish farming on soft bottom polychaeta assemblages in temperate regions. Mar. Poll. Bull., 69: 165-171. https://doi.org/10.1016/j.marpolbul.2013.01.032
  37. Mazzola, A., S. Mirto and R. Danovaro, 1999. Initial fish-farming impact on meiofaunal assemblages in coastal sediments of the western Mediterranean. Mar. Poll. Bull., 38: 1126-1133. https://doi.org/10.1016/S0025-326X(99)00142-3
  38. McGhie, T.K., C.M. Crawford, I.M. Mitchell and D. OBrien, 2000. The degradation of fish-cage waste in sediments during fallowing. Aquacult., 187: 351-366. https://doi.org/10.1016/S0044-8486(00)00317-3
  39. MLTM, 2010. National investigation of marine ecosystem.
  40. MLTM, 2011. National investigation of marine ecosystem.
  41. MLTM, 2012. National investigation of marine ecosystem.
  42. Naylor, R.L., 2006. Environmental safeguards for open-ocean aquaculture. Issues Sci. Technol., 22: 53-58.
  43. Park, H.S., J.W. Choi and H.G. Lee. 2000. Community structure of macrobenthic fauna under marine fish culture cages near the Tongyong, southern coast of Korea. J. Korean Fish. Soc., 33(1): 1-8.
  44. Pearson, T.H. and K.D. Black, 2001. The environmental impact of marine fish cage culture. In Black, K.D.(ed.), Environmental Impacts Aquaculture. Academic Press, Sheffield, pp. 1-31.
  45. Pearson, T.H. and R. Rosenberg, 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Annu. Rev., 16: 229-311.
  46. Pereia, P.M.K., K.D. Black, D.S. Mclusky and T.D. Nickell, 2004. Recovery of sediments after cessation of marine fish farm productuion. Aquacult., 235: 315-330. https://doi.org/10.1016/j.aquaculture.2003.12.023
  47. Pocklington, P. and P.G. Wells, 1992. Polychaetes: Key taxa for marine environmental quality monitoring. Mar. Poll. Bull., 24: 593-598. https://doi.org/10.1016/0025-326X(92)90278-E
  48. Reish, D.J., 1972. The use of marine invertebrates as indicators of varying degrees of marine pollution. In, Marine pollution and sea life, edited by M. Ruivo, R. A. O. Fishing News (Books) Ltd., London, pp. 404-411.
  49. Ritz, D.A., M.E. Lewis and M. Shen, 1989. Response to organic enrichment of infaunal macrobenthic communities under salmonid seacages. Mar. Biol., 103: 211-214. https://doi.org/10.1007/BF00543349
  50. Ross, A., 1989. Marine fish farming: Scotland's pride or problem? Ecos, 10(3): 8-12.
  51. Rygg, B. 1985. Distribution of species along pollution-induced diversity gradients in benthic communities in Norwegian Fjords. Mar. Poll. Bull., 16: 469-474. https://doi.org/10.1016/0025-326X(85)90378-9
  52. Sanz-Lazaro, C. and A. Marin, 2006. Benthic recovery during open sea fish farming abatement in western Mediterranean, Spain. Mari. Envir. Res., 62: 374-384. https://doi.org/10.1016/j.marenvres.2006.05.006
  53. Shannon, C.E. and W. Weaver, 1949. The mathematical theory of communication. Univ. of Illinois Press, Urbana, 125pp.
  54. Shim, J.H., Y.C. Kang and J.W. Choi. 1997. Chemical fluxes at the sediment-water interface below marine fish cages on the coastal waters off Tong-young, south coast of Korea. The Sea, J. Kor. Soc. Oceanogr., 2(2): 151-159.
  55. Sutherland, T.F., C.D. Levings, S.A. Petersen, P. Poon and B. Piercey, 2007. The use of meiofauna as an indicator of benthic organic enrichment associated with salmonid aquaculture. Mar. Poll. Bull., 54: 1249-1261. https://doi.org/10.1016/j.marpolbul.2007.03.024
  56. Tomassetti, P. and S. Porrello, 2005. Polychaetes and indicator of marine fish farm organic enrichment, Aquacult. Intern., 13: 109-128. https://doi.org/10.1007/s10499-004-9026-2
  57. Tsutsumi, H. 1990. Population persistence of Capitella sp. (Polychaeta; Capitellidae) on mud flat subject to environmental disturbance by organic enrichment. Mar. Ecol. Prog. Ser., 63: 147-156. https://doi.org/10.3354/meps063147
  58. Tsutsumi, H., S. Fugunaka, N. Fujita, and M. Sumida, 1990. Relationship between growth of Capitella sp. and organic enrichment of the sediment. Mar. Ecol. Prog. Ser., 63: 157-162. https://doi.org/10.3354/meps063157
  59. Tsutsumi, H and T. Kikuchi, 1983. Benthic ecology of a small cove with seasonal oxygen depletion caused by organic pollution. Publ. Amakusa Mar. Biol. Lab., 7: 17-40.
  60. Tsutsumi, H., T. Kikuchi, M. Tanaka, T. Higashi, K. Imasaka and M. Miyazaki, 1991. Benthic faunal succession in a cove organically polluted by fish farming. Mar. Poll. Bull., 23: 233-238. https://doi.org/10.1016/0025-326X(91)90680-Q
  61. Ueda, N., H. Tsutsumi, K. Tokusaki, R. Takeuchi, and K. Kido, 1992. Sediment condition and macrobenthic community in the nearshore area of Dokai Bay. Benthos Res., 42: 55-62.
  62. Villnas, A., J. Perus and E. Bonsdorff, 2011. Structural and functional shifts in zoobenthos induced by organic enrichment - Implications for community recovery potential. J. Sea Res., 65: 8-18. https://doi.org/10.1016/j.seares.2010.06.004
  63. Vita, R. and A. Marin, 2006. Environmental impact of capture-based bluefin tuna aquaculture on benthic communities in the western Mediterranean. Aquacult. Res., 38: 331-339.
  64. Weston, D.P., 1990. Quantitative examination of macrobenthic community changes along an organic enrichments gradient. Mar. Ecol. Prog. Ser., 61: 233-244. https://doi.org/10.3354/meps061233
  65. Ye, L.X., D.A. Ritz, G.E. Fenton and M.E. Lewis, 1991. Tracing the influence on sediments of organic waste from a salmonid farm using stable isotope analysis. J. Exp. Mar. Biol. Ecol., 145: 161-174. https://doi.org/10.1016/0022-0981(91)90173-T
  66. Yokoyama, H. 2001. Environmental quality criteria for fish farms in Japan. Aquacult., 226: 45-56.

Cited by

  1. Community Structure and Health Assessment of Macrobenthic Assemblages during Spring and Summer in the Shellfish Farming Ground of Wonmun Bay, on the Southern Coast of Korea vol.47, pp.6, 2014, https://doi.org/10.5657/KFAS.2014.0908
  2. A Comparative Study of Macrobenthic Community Structure in the Farming Grounds, Tongyeong, southern coast of Korea : Focusing on Biological and Geomorphological conditions vol.30, pp.5, 2018, https://doi.org/10.13000/JFMSE.2018.10.30.5.1565